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I, Bakerian Lrcrurg, 1917.—The Configurations of Rotating
Compressible Masses.

By J. H. Juans, M.A., F.R.S.

Received May 14,—Lecture delivered May 17, 1917.

1. Ox the supposition that astronomical matter may be treated as incompressible and
homogeneous, a single star rotating freely in stable equilibrium can be spheroidal or
ellipsoidal, but of no other shape, while DARWIN has shown that both components of
a binary star must be very approximately of the ellipsoidal shape.

Both for the interpretation of astronomical observations and for the more general
purposes of cosmogony, it becomes of importance to examine how the sequence of
figures assumed by an ideal homogeneous mass will be modified by the compressibility
and non-homogeneity of actual astronomical matter.

The general mathematical problem of determining the configurations of stable
equilibrium of the most general compressible mass is one of great complexity, but
some important simplifications can be introduced by the use of general considerations.
These are discussed in §§ 2—5 of the present paper.. In § 10 we abandon the general
problem and turn to a detailed study of the configurations possible when the
compressibility is such that pressure and density are connected by the law

P = kp’—CoOns.,

where « and y are constants, this of course including the important case of a gas in
convective equilibrium. The results obtained are summarised, and their astronomical
bearings discussed, in §§ 45-58. The paper is arranged so that these last sections
contain the main results of the paper in a form which is free from mathematical
technicalities ; it is hoped that they will prove intelligible to readers who have
omitted the more mathematical sections.

2. For a mass of matter of the most general kind, rotating with angular velocity
® about the axis of z, the equations of relative equilibrium are three of the type

op o€
= = p— G e e e e e e 1
3 = P &e., (1)
where .

Q=Vido(@+s). . . . . . . .. (2
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158 MR. J. H. JEANS ON THE CONFIGURATIONS

Here V is the total gravitational potential, including that of tidal forces from
neighbouring stars, if any are present. From equation (1) it follows that the surfaces
p = cons., = cons., and p = cons., all coincide, so that the free surface, being a
surface of constant pressure, must also be a surface of constant density, say p = o,
and must also be one of the equipotentials = cons., say Q = C. The value of the
gravitational potential over the surface must accordingly be

V = gt (e 447),

this being the potential of the rotating mass itself and of certain tide-generating
masses outside. 'We may suppose the positions and structure of these tide-generating
masses to be given, so that V?V is given at all points outside the surface of the
rotating mass, while V is given at all points on the surface by the above equation,
and vanishes at infinity. By a fundamental theorem in potential theory, it follows
that V is determined uniquely at every point outside the mass in terms of w, C and
the shape of the boundary, whence 9V/dn must be determined uniquely in terms of
these quantities at every point of the boundary.
If M is the total mass of the rotating body,

1M = [ WV s,

n

where the integral is taken over the surface of the body, and on substituting the
value of 9V /on, this becomes a linear equation, which may be regarded as determining
C uniquely in terms of M.

Thus when M, » and the equation of the boundary are given, it appears that V and
oV /on are uniquely determined over the boundary. If the value of p at the boundary,
say o, is given, and if’ we also know the law of compressibility at the boundary,
then p and dp/dn are uniquely determined over the boundary. Thus not one, but
two, surfaces of constant density are fixed, namely the boundary S and the surface .
Just inside 1t, say S

The mass, say M/, inside S’ is in equilibrium under the rotation  and gravitational
forces which originate from the external tide-generating masses and also from the layer
of matter between S and 8. It now follows from the preceding argument that the
surface of constant density next inside &', say S, is also determined. There are
now three surfaces of constant density fixed, and by a continual repetition of the
foregoing process, we can fix all such surfaces in turn.®* Thus when the external
boundary is given, and also M, » and the tide-generating masses, which may be

* This cannot be defended as a piece of rigorous mathematical reasoning, but there can, I think, be no
doubt that it is true for practical purposes. I have discussed the mathematical complications elsewhere
(‘ Roy. Soc. Proc.,” A, vol. 98, p. 4138). A more formal proof of the theorem will be found in the ¢ Monthly
Notices of the R.A.S.,” vol. 77, p. 187.
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OF ROTATING COMPRESSIBLE MASSES. 159

regarded as the data of the problem, the interior arrangement of the matter is
uniquely determined.

3. The first consequence of the foregoing theorem is that when the boundary of a
mass is fixed, all the internal vibrations are necessarily stable. For the change from
stability to instability can only occur through a vibration of zero-frequency, and this
would require that there should be two contiguous equilibrium arrangements of the
interior matter, a possibility which is excluded by the result just obtained.

The only possible configuration for a mass at rest and under no tidal forces will
clearly be one in which the boundary is spherical and the surfaces of constant density
are also spherical and concentric with the boundary.® If the mass is set into slow
rotation, this system of concentric spheres will give place to a system of concentric
spheroids. As the rotation increases further, the surfaces of equal density will no
longer be strictly spheroidal, but it is clear that there must always be a linear series
of configurations of equilibrium in which the boundary has the shape of a figure of
revolution. This series of course reduces to the series of Maclaurin spheroids when
the matter is incompressible.

Excluding for the present the case in which o (the density at the boundary),
vanishes, it can be shownf that there must be an infinite number of points-of
bifurcation on this series of figures of revolution, these corresponding to the different
sectorial harmonics of the figure. The first point of bifurcation corresponds to the
second sectorial harmonic : when this is reached the circular cross-section gives place
to a slightly elliptic cross-section, and this leads to a series of figures having three
planes of symmetry and three unequal axes, these figures reducing to the Jacobian
ellipsoids when the matter is homogeneous and incompressible. It is convenient to
refer to these two series as the series of pseudo-spheroids and pseudo-ellipsoids
respectively. The first point of bifurcation on the series of pseudo-ellipsoids corre-
sponds to a third harmonic displacement and leads to a series of pear-shaped figures.

It seems almost certain, although it has not been rigorously proved, that this last
series of figures ends by fission into two detached masses revolving round one another
as in the ordinary binary star formation. Assuming this, we may regard the passing of
the first point of bifurcation on the series of pseudo-ellipsoids as the beginning of the
process of fission. "Until this stage is reached we have seen that the only possible
figures of equilibrium for a rotating mass are pseudo-spheroids and pseudo-ellipsoids.
For an incompressible mass the pear-shaped figures are unstable, so that spheroids

and ellipsoids are the only possible figures of stable equilibrium. If the pear-shaped

* The special application of this to the figure of the Earth has been discussed in a separate paper
(‘ Roy. Soc. Proc.,” A, vol. 98, p. 413).

t “Monthly Notices of the R.A.S.,” vol. 77, p. 189. In this paper I was mistaken in thinking that
o = 0 presents a true exception to the general theory. The general argument there given failed to prove
the result in the spetial case of o = 0, but the result is true nevertheless, as will appear from the present
paper.

Y 2
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160 MR. J. H. JEANS ON THE CONFIGURATIONS

figure proves to be unstable also for all compressible masses, then the only possible
figures of stable equilibrium for a compressible mass will be pseudo-spheroids and
pseudo-ellipsoids.

4. When the mass is compressible a complication can occur which, as it happens,
does not arise in the incompressible problem. The resultant normal force at any
point on the surface of rotating mass is —0Q/9n, this being the resultant of gravity
and centrifugal force. In the incompressible problem, 0Q/dn does not vanish, except
in the unstable configurations at the far ends of the spheroidal and ellipsoidal series, but
this is not necessarily the case in the compressible problem. We shall find that 0Q/on
can vanish either on the series of pseudo-spheroids or on the series of pseudo-ellipsoids,
and when this happens matter will necessarily be thrown off at the points at which
0Q/on vanishes. The series of figures of equilibrium may accordingly be abruptly
terminated at any stage by the vanishing of 9Q/on.

5. Thus it appears that the series of figures of equilibrium for a compressible mass,
until the stage at which fission begins, will consist of pseudo-spheroids and pseudo-
ellipsoids, these series possibly being abruptly terminated by the vanishing of 8Q/on
at any point. Our problem is to study these series of configurations; our method

will be as follows :

For an incompressible mass the density at the centre, which we shall denote by p,,
is identical with the density at the boundary, which we denote by o. For a
compressible mass, p, will be different from o, and a rough measure of the extent to
which the density differs from uniformity will be given by a quantity e defined by

ezﬂpl’.............(s)
0

We know the solution of the problem when ¢ = 0; we require to obtain it for all
values of e Our method is to adopt the known solution when ¢ = 0 as generating
solution and to obtain, by what amounts to a method of successive approximations, an
expansion for Q in powers of e. The success of the method will depend on the extent
to which the series so obtained is convergent.

The value of Q obtained in this way will be a function of «, ¥, # e and of the
constants which enter into the law of compressibility. When , 7, z are small the
value of Q will be found to be convergent for all values of e but as x, y, z increase,
the range of convergence of the series contracts. But in the most important case we
shall consider, it is found that the series is convergent, even for points furthest .
removed from the origin, for values of ¢ up to some value between two and three.
The largest value of ¢ which is of physical interest is e = 1, corresponding to o = 0,
and for this value of e the series converges with considerable rapidity, so that the first
few terms will give a fair approximation to the truth.

Our method, then, is to obtain the series of pseudo-spheroids and pseudo-ellipsoids
as deformations of the already known series of spheroids and ellipsoids, expanding in
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OF ROTATING COMPRESSIBLE MASSES. 161

powers of the parameter e. The boundaries may accordingly be regarded as distorted
ellipsoids.

In a previous paper® I showed how to obtain the potential of a homogeneous mass,
expanded in powers of a parameter which measured its divergence from the ellipsoidal
shape. As a preliminary to the present investigation, we must examine the
corresponding problem when the mass is not homogeneous.

Potentral of a Non-homogeneous Distorted Ellipsoid.

6. We shall assume, as being adequate for the present problem, that it is possible
to expand the density in the form

P T PP TP TP vy e e e e e e (4)

where p, is the density at the origin, which is taken to be the point of maximum
density, and p,, ps, py ..., are functions of =, y, z of degrees 2, 3, 4 ..., respectively.
No terms of degree unity occur because, from our choice of origin, the first
differential coefficients of p vanish at the origin. The value of p, is

ap p )
= - %
P2 < a 24 /L)J’\)L'O?/_[’— /\)7

the differential coefficients all being evaluated at the origin. Our choice of origin
has been such that p, is necessarily positive for all values of @, y and z, so that by a
suitable choice of direction of axes, it must be possible to express p, in the form

P2 = (Po"“") <% % >

Let us further put
. pytpat... = (PO“O')GPm

where e is a numerical quantity which may for the present be left undefined, but will
ultimately be taken to be the parameter defined by equation (8), and P, is a function
of @, y and z. Then the general value of p, as given by equation (4), becomes

/J=Pu—(po—«r)< I/”F +eP.)>,. N )

and the boundary, defined by p = o, has for its equation

gg. +GP_1..V.......((;)

When e is not too great this is a distorted ellipsoid. In the paper already referred
to, I showed how to write down the potential of a homogeneous mass whose

* ¢Phil. Trans.,” A, vol. 215, p. 27.
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162 : MR. J. H. JEANS ON THE CONFIGURATIONS

boundary was given by an equation of the type of (6), the solution occurring as a
series of powers of e It is now necessary to extend the method so as to be able to
write down the potential when the internal density is variable and given by
equation (5).

As a matter of convenience, of which the advantage will appear later, we shall
permit Py to include terms of degree 2 as well as terms of degree 3 and higher.
This is equivalent to regarding the mass under discussion as being arrived at by
distortion from an ellipsoid of density,

a2 a2 2
=G S ()
the only restriction on the distortion being that the point of maximum density must
remain the origin, and that the density at this point must remain equal to p,, But
distortions which are themselves ellipsoidal are not prohibited, as they would be if
second-degree terms were excluded from P,.

7. Let ¢ be a function of the density p, defined by

¢ =Lt (8)
Po— O
so that, as we pass from the centre to the boundary, ¢ varies continuously from
0 to 1. The surface of constant density p has for its equation

2 .9 2
%+%§+§2+6P0 =9 . . . . . . . . . (9
which may be regarded as a distorted ellipsoid of semi-axes gu, gb, ge. The boundary
now figures as the special case of ¢ = 1.

Let the potential of a homogeneous mass of unit density bounded by the surface (9)
be denoted by V,(g) when evaluated at a point outside the surface, and by V,(g)
when evaluated at a point inside the surface.

The whole heterogeneous mass of density given by equation (5) may be regarded
as split up into shells of constant density, and the potential of the whole will be
found to be given by the formulee :

o

Vo=oVo ([ Vi@ do o (0

i Po
W:WMHLW@WﬁLW@Mm.... L. (1)
the first formula giving the potential at a point entirely outside the mass, and the

second formula giving the potential at a point inside the mass at which the
density 1s p.
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OF ROTATING COMPRESSIBLE MASSES. 163

8. Suppose that P, is expressed in the form

P=F(%, L, 2

a’’ bt
and let P be a function of «, 7, z and a new variable u, given by

P = F< g 9%y 9’z
q2a2+lu ’ q2b2+lu > q2C2+M

so that P, is the value of P when x = 0. Further introduce ¢&’, 4/, {’ defined by

fl = %/(qgaz'{'/")’ &e.,
so that

P — F(QZS/’ q277/, ng,)

and f and D (an operator) defined by

j'—:_ 2? + Y + zj 1=(qa+/‘)ém+ =1,

O e s
q a q a + 85/2 \ng2 q2b2+,l/» an/2 q202 q202+,u ag.rz *

Let ¢ (q), a function of ¢, 4, &/, x and ¢, be given by

#a)= o P= 2 DR+ L(1r P s (G P |

_le [DP2— LDy

L rayepe
: fD.P’

3T)eP2
192 so16 ] D ]

9216
S [DPP— ke . . oo (12)
When u =0, D =0 and P = P, so that ¢ (q) reduces to ¢P,, and

—(—2)=g< +Iy2+ 4P q>

Thus the surface of constant density p is the surface u = 0 in the family of surfaces

Jro@ld =0 . . . . . . . . . . (13)
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164 MR. J. H. JEANS ON THE CONFIGURATIONS

From the previous investigation* it now follows that the value of V,(q) is

g 2@ fabe d
VO (q) - j\p,'<f+ q2 >[(q20&2+,u) <q262+,ul($ (q202+M)J% > * * (]'4)

in which the lower limit of integration u’ is the root of equation (13) at the external
point x, ¥, z at which the potential is being evaluated. The same formula (14)
with & put equal to zero will give the value of V,(g), the potential at an internal
point.- -

To transform these expressions into a form suitable for use in the present problem,
introduce new variables A, & », ¢ to replace u, &, #, {’, these being defined by

, A = ulq’, £=q*¢ =af(d®+N), &e. . . . . . . (15)
‘We now have .

P= F(E’ un §)7

.’,U2 y2 2’2
+ + -
a*4+N DN A

2

q,

@f =

SRR TRY NE SRR £ A E Y
qﬂ_ »\a2 a2+>\>a$2 b2 I)2+A/ 8772 2 02+>\ aéz,

\

while formula (14) becomes

Vi) === | [@f+a@l 5P, g

in which A stands for [(a®4+\) (b2+X) (¢*+7)]5, and ) is the root of

2

x Yy’ 2 oy
a2+>\+b2+7\+c2+>\+¢(9)_q" N O

The same formula (16) in which A\’ is put equal to zero will of course give the
value of V,(g).
9. Attacking equations (10) and (11), we now have
1

[Vil@)dp = (=) | Vi (0) dg?

L dV
= (py—0) [Vo (1)“LQ2 dog(g) df]{l ,
so that equation (10) becomes

Vozpovo(l)-—(po—-a")Eo, e e ‘(],8)

* ¢ Phil. Trans.,” A, vol. 215, p. 27.
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OF ROTATING COMPRESSIBLE MASSES.. 165
where
1
Eo=jq2d‘;‘)qg)dq?. N ¢ 1))
0

This expresses that V, is equal to the potential of a homogeneous solid of density
po minus (p,—o) times the potential E,, this last term accordingly representing the
effect of the falling off of density from the maximum value p,.

Similarly equation (11) becomes

Vi = pOVz(l)_(pO—a-> Ei" . . . . . . . . (20)
where
_ | 2dVo§q> 2. ! 2dV,~(§I) 2 ¢
E, = joq g’ dg* + jqq g dg®, . . . . . . (21)

in which the limit of integration is the value of ¢ at the internal point at which the
potential is being evaluated.

The value of V,(g), as given by formula (16), is a function of g¢* and X/, the two
being connected by equation (17). Thus we have

o

dv,(q) — oV, (g) + oV, (q) o ,
dq? 0q® o\ o’

and the last term vanishes since 0V, (q)/oN contains [¢*/+¢ (q)] as a factor. Thus
we have

dVo(q) _oVolg) _ o [7(|_2plg)\or " 29
e —wwbojw(\l 8q2) o (22)

>

and the value of dV;(q)/dg” is given by the same formula with A" put equal to zero.
Using these values we find ' '

E, = wabcj;qz[j:(\l—é(g—é?—);\)%}dqi Coe e (28)
E; = rabe J:qz U: (l—%?l)%J dg*+ rabe j: q U:(l—%ﬁl—»%}dqz . (24)

Both values of E may be regarded as given by a double integration in a plane in
which A and ¢ are rectangular co-ordinates. Let us first consider Ei.
In fig. 1, let PQ represent the curve whose equation is

2 2 2

o Y z 2
> + + +ol@)=¢q.. - . . . . . (2]
AN DTN PN ( ) =14 (25)

VOL. CCXVIIL.—A., Z
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166 MR. J. H. JEANS ON THE CONFIGURATIONS

Clearly, when ¢ = 0, the value of A is oo, while when ¢ = 1, A has some value \”,
which is the root of -
oy a()=1 (26)

Fin Ban et e

The value of E, is obtained by integrating over the area shaded in fig. 1.
Changing the order of integration, we find

\

EU=wabcj.:,[jxl—i%%l)dqz]_%; R 10

in which the lower limit ¢ is the root of equation (25), while the lower limit A" is the
root of equation (26).

The value of E; is obtained by a double integration in the same plane over an area
such as that shaded in fig. 2, the different directions of shading distinguishing the

P B P

0 g A 0 Q A

Fig. 1. Fig. 2.

areas covered by the two separate integrals in equation (24). Again changing the
order of integration, we obtain

Eizmbch:f(’\l_%g_))dqﬂ%. C L (2)

in which the lower limit ¢ is again the root of equation (25).
This completes the solution of the potential problem; we now attack the main
problem of determining configurations of' equilibrium.

General Equations of Equilibrium.

10. We can only find configurations of equilibrium by assuming a definite law to
connect pressure with density. We shall accordingly assume the relation

p=kp' —cons, . . . . . . . . . . (29)
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The equations of equilibrium (1) now assume the form

and these have the common integral

Xl = Q Co : :
= +cons Coe oo (30)

We have already (equations (8) and (5)) assumed the value of p to be

)= po{ —ez-——epo], R 3 )
and on expanding p*~! by the binomial theorem, equation (30) becomes
. xz A
Q = cons. +/c‘yp07_1[— <6252' +62P0) +3(y—2) <ez +¢P >
) .-‘.’,Cz 2 8
-4 (y—2) (y—3)<62? +€“P0> + :I ... (82)

Let the figure of density given by equation (81) be supposed to be a figure of
equilibrium under a rotation » and tidal forces of potential V, where

Vo= +raf+rd®, . 0 L L (33)
in which of course 7, +7,+7; = 0. We then have at any point inside the mass

Q= V +V +§w2(ﬂc2+y2)

= po[Vi(1) —eE] + (ma@ + g +77°) + 50 (2P +3°), . . . . (34)

and on equating the right-hand members of equations (32) and (34) we obtain a
solution of the problem.

11. The simplest solution occurs when the variations of densmy are small, so that
¢ is small ; in this case xy is large. We must not simply put ¢ = 0 in equation (82),
for otherwise Q would reduce to a pure constant. We accordingly suppose «ye
to remain finite, and put ¢ = 0 in all remaining terms. Thus the equation to be
solved is

povi(1)+(T1x2+1”2y2+‘r322)+%w2(w2+y2)=CODS.-KyepUV—1<— ) . (85)
zZ 2
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168 MR. J. H. JEANS ON THE CONFIGURATIONS

The boundary reduces to the ellipsoid

z
SrhE=1

and the value of V,(1), which is the potential of this ellipsoid filled with matter of
unit density, is
V.(1) = —wabe (J 2P+ Jgf+J2=J), . . . . . . (36)

where the notation is that I have previously used® in which

J

[ N
‘\B"'_In A(a®+2) (B*4N)... (37)

On substituting this value for V(1) into equation (35) and equating coefficients
of &%, 9/, #°, we obtain, as the conditions for equilibrium,

2

e
Jo——" -2 2 .. . . . . (38
A apabe  2mpyabe  a? (38)
JB_ T2 - w2 = '6‘ N . N . . . . . . (89)
apyabe  2mpyabe b
- 6
J — T3. = =,
¢ mpabe ¢ (40)
in which
y—2
g="YP (e
wabe (41)

By addition of the corresponding sides of the three equations (36) to (38), we
obtain
2 ' 1

abe  wpabe

3

Nl,_.

%) CoL (42)

It is now clear that equations (38) to (40) together with (41) are simply the
equations which determine @, b, ¢, the semi-axes of the ellipsoid which is a figure of
equilibrium for an incompressible mass. We have, however, found that as far as
this first approximation the value of p is not necessarily constant throughout the
ellipsoid ; it 1s given by

2

/op? el ‘
p=n—l—)(S+L45) L (4)

We have further found the relation connecting 6 with the constants « and .
Substituting the value for 6 from equation (41) into equation (32), and equating the

* ¢ Phil. Trans.,” A, vol. 215, p. 50.


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OF ROTATING COMPRESSIBLE MASSES. 169

value of  so obtained to the value given by equation (34), the general equation of
equilibrium is obtained in the form

poLVi(1) =B + (ma® + g’ + 72°) + 30 (*+9°)

= cons. —mp,abch ij+eP>—le( '—2)<E@E+GP c
' Po @2 Lg 2€\Y y 0&2 0

=2 =3) (25 4R -] L (0)

12. The first approximation has been obtained by putting ¢ = 0 in this equation ;
we now proceed to higher approximations. A second approximation will be obtained
by omitting all power of ¢ beyond the first; a third approximation by not going
beyond ¢*, and so on. ‘

On replacing <P, by ¢P,+&Q,+ R, + ..., we may suppose that the density expanded
in powers of ¢ 18 7

e
p:po{l—e(z2—-2+6P0+62Q0+63R0+...>],- Co .. (4D)

so that the boundary, p = o, is

.2
2§2+6P0+62Q0+GSBO+...=1. N 1))

The general equation of equilibrium will be obtained from equation (44) on
replacing <P, by }
6P0+62Q0+63R0+.... e e e e e e (47)

The value of V(1) to be used in equation (42) will no longer be that gfven by
equation (36); let us suppose the whole value to be

Vi(D)+eAV, (1) +V, (D) +..., . . . . . . . (48)

this being the internal potential of a homogeneous solid of unit density whose
boundary is determined by equation (46). Similarly, let the whole value of E, be
supposed expanded in the form

Ei+‘€AEi+€2 (SE,"*' e
Finally, let the value of «® in the complete solution be supposed given by

o?
27rp000b0

=ntelAn+édn+.. . . . . . . . . (49)
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Then the complete equation (44) becomes, on dividing throughout by =p,abe,

[V.(1)+e AV (1) + 0V, (1) +...—e (Bi+e AE +...) ]

wa?
7'1962 -+ 72y2 + 73z2

. 2 ,1’2 2
the +(n+eAn+édn+...) (2 +9?)

-+

\

2 2
= cons. —Hl‘<2f~2+eP0+eon+e3R0+.. ) —e(y—2) (Z 5+l +EQu+ .. >

3
+%62<y_2)(y_s)(zg-ﬁepo-k...)—...], . (50)

an equation in which each side is equal to Q/mp,abe.

18. On equating terms which are independent of ¢, we of course arrive merely at
equations (38) to (40); these determine a, b, ¢ when the data of the problem are
given.

On equating terms in ¢, we obtain

LAV -B) +an () = 0| Pmb-2) (25] | L (1)

In evaluating E;, we put ¢=0, and so may neglect ¢(g). Thus, from
equation (28), .
E = rocbcj (11— q)dx ()

0

in which, from equation (25), ¢ is given by
' , ¥ 2
N TN

(53)

q

Thus, in the notation defined by equation (37),
B, = —irabe (Jx'+Jppt/ + oot + 2 g2 +...=J). . . . . (54)

Using this value for E,; it appears that all terms in equation (51) are of degrees 4
and 2 except P, and AV,(1). The value of AV,(1) depends on that of P,, and terms
of degree n in P, give rise to terms of degrees n, n—2, ... in AV,(1). It is accord-
ingly clear that the solution of equation (51) must be such that P, consists of terms
of degrees 4 and 2; the value of AV,(1) is then also of degrees 4 and 2, and, on
equating coeflicients, we can determine the coefficients in P,.

Following closely the notation previously used,* let us assume for P; the value

La* t Nzt | 2l | 2mAat | 2 2px* | 2 207 )
p,= L Myt N2 G| e DU AT ML L2 (50)
o b ¢ b'c cta b b ¢
* ¢«Phil. Trans.,” A, vol. 215, p. 54. The small quantity 3e® of that paper is replaced by e in this
paper, otherwise the figure of that paper reduces to the present figure on taking a, f, y and s all zero.
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so that (cf. § 8)
P = L+ Myt + N+ 207702+ 2m8P8% + 2né% + 208 + 2q0° + 2082 . . (56)
As far as terms of first degree in ¢, we may, from equation (12), take

s(q) = [P—1fDP+ g f2DP) . . . . . . . (57)

the remaining terms disappearing because P contains no terms of degree higher than
four in & 5, & The whole potential of the solid of unit denslty, as far as terms in e,
is from formula (14)

V(1) +eAV, (1) = ~mbcj:[f+¢(1) dx
so that _ |
AV}U)zZ“W“&ﬁ‘EP %fDP+6zf?D%1 N (1)

in which ¢ is put equal to 1.
Equation (51) now becomes

[[P—ZJ‘DPa—Mj?DzP]———OP
= (ST 250 = D)= b (=20 (25w an ) L (59)

Clearly the left-hand member of this equation will be a linear function of L, M, N, ...,
while the right-hand member does not involve these coefficients. Thus the values of
L, M, N, ... will each be the sum of a number of contributions corresponding to the
different terms on the right of the equation. Let us suppose that

P, =P +P"(y=2), . . . . . . . . . (60)
L= L4l (y=2), & - -« o . (61)

aud that
thus separating the contribution from the term in (y—2) from the remainder.

14. Tt will be remembered that AV, (1) is the increase of internal potential
resulting from deforming the surface of an ellipsoid of unit density so that its surface

1s changed from ‘ S
Ll +yf (VP +25 1 =0, . . . . . . . . (62)

Plat+ i [0+ 2P —1+ePy=0.. . . . . . . (63)

mto

Consider the special deformation in which P, 1s of the form

\/,< b”z) (s
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where  is any function whatever. Equation (63) can be solved in the form
Pl + i [+ P —1—y =0, . . . . . . . . (65)

and on comparison with equation (62) the deformation is seen to consist of the addition
of a thin homeoidal shell of uniform density. By a well-known theorem, the potential
of such a shell is constant at all internal points, so that for the particular deformation
represented by equation (64), we have AV, (1) = a constant. Incidentally, we may
note that dV, (1) is also constant, and so on to all orders.
15. Returning to equation (59), it appears that P, must satisfy -

L2\ 2

| [Pk o] EZAZ‘ —6P = —16 (z z)
0 ) a

and from the considerations brought forward in the last section, it 1s clear that the
solution is
P =y (z2) (66)
_2<w)

so that
1/ = %(&47 &e. ; .p// - q// p/a—

We are left with the problem of determining P’, which must satisty
[, [P=1/DP+ o D2 12 —op,
0
= § (Bt + 22Ty =)+ An(P+97). . . . . . . (67)

Unfortunately there is no simple means of dealing with this equation, and the
general solution obtained by direct algebraic treatment is so complicated as to convey
no meaning at all to the mind.  Our method will be to consider first an approximate
solution of a simple form, this having reference only to the fourth degree terms in
P’; we shall then attempt to estimate the amount of error involved, giving detailed
calculations and precise solutions for two configurations of special importance.

16. The approximate solution we shall consider is

8 /.4 4
L'=.--%%JA,\,Z'=—sz?bfiJBc,&c.. L (68)

- This satisfies equation (67) as regards terms of fourth degree except for the integral
on the left-hand, so that the error of the solution is roughly measured by the value
of this integral.

Now from the definition of the integrals J,,, &c., it is clear that the greater part
of the value of these integrals arises from contributions from comparatively small
values of X, so that to a moderate approximation we shall have

T=T=-ﬁ=7¥=...:k,say.. N (1))
A A
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If these relations were strictly true, the value of P;/ would be

A A

SOCIETY

OF

A

SOCIETY

OF

k w2 2
P’=—-l—<2—> T e
0 2 6 “2 ’ (70)
so that, from the consideration of § 14, we should have
[, [P—t/DP+ g DPIR =0 . (7])
0

Thus the error is of the order of the error of the approximation (69) multiplied by
the coefficients of the integral (71), which coefficients are found to be small. It may
be noticed that equations (69) are strictly true in the spherical configuration in
which @ = b = ¢, and the error increases as a, b, ¢ become more unequal.

Thus the error in solution (68) is nel in the spherical configuration; we shall now
evaluate it exactly in two other configurations: (i.) the point of bifurcation of the
spheroidal and ellipsoidal series, and (ii.) the point of bifurcation of the ellipsoidal
and pear-shaped series.

17. Ellipsoidal Point of Bifurcation.—At the point of bifurcation of the series of
spheroids with the series of ellipsoids, the semi-axes o, b, ¢, and the values of n and 6
are given by

' a="b=11972, ¢ = 069766,
2
n = ="—= 018712, = 047126,
2mpy
the scale of length, which is entirely at our disposal, being chosen so as to make
abe = 1.
Since the configuration under discussion is now spheroidal, we have
L=M=’n, l=m, p=(.Z’
so that there are only three coeflicients, say, L, m and N, to the terms of fourth
degree, and two coefficients p, » to terms of second degree.
1 For any configuration, formula (48) expresses the internal potential of a solid
' of uniform unit density, so that
Vv? [Vl(l) +eAVi(1) +e23V1~(1) + ol=—47 . . .o, (72)

It follows that AV, (1), ¢V, (1), &e., are all spherical harmonics.

In the present problem in which @ =: b, these harmonics are also symmetrical about
the axis of z, and so are functions of x’+#* and of z only, so that we may assume

” 1 1 paep] 9A
[P—1/DP+4:/? D*P] 3
0
__Av(Q),
wabe
= dou [(*+9f =8 (" +) '+ §2] +4dy (" +9/-22), . . (78)

VOL. CCXVIII.—A. 2 A


http://rsta.royalsocietypublishing.org/

%

a
L
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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in which the quantities in square brackets are the most general zonal harmonics of
appropriate type, and the coefficients ¢,;, d;, are chosen so as to be identical with
those used in my previous paper. Either by direct calculation or by comparison with
the results obtained in this previous paper, we find

4 1
4011 = L <JA*_ &-2 A*+ -G?HA})

1 1 3
+m <— —0—5 A3C + mHAS(}) + égzNHA‘zcm . . . . (74)

’ 1
4d, = 2p (JAA"" &_QIAA> - %IAC

6L, oL 1 3 /1 \
+‘E§ AT "&IIAZ"I" %<2IA20"‘C~Z2 AC>_ N< IAC_IACZ), . . (75)

4c*7 \¢*

in which the notation is that already defined in formula (37), supplemented by the
further abbreviations :

[ A dA . _ A% d)
IAB"'_LA(@”+>\)(Z)2+>\)...’ Ho. = |x@myemys - -

and the further abbreviations G,s., Fsp., will be used when required, to denote
similar integrals having terms A%, A\* in the numerator. v

18. For computation, it is necessary to construct tables of these integrals. The
table on the next page contains values which are required both here and later in the
paper. The method of computation has been fully described elsewhere.*

Using these values, I find in place of equation (74)

4eyy = 0°010947L—0064325m+0°094707N. . . . . . (77)

On equating coeflicients of z*, %" and 2* in equation (59) we obtain

L 0
4c,,—0 &"s = %'JAA_% (’)""2)&_4 )
m 0
—'16011—6%} = %JAC_% <y—2)W } e e e e e (78)

N 9
‘332‘011"9;3: "I‘Joc‘%(y‘mgf J

¥ ¢ Phil. Trans.,” A, vol. 215, p. 60.
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TaBLE of Integrals.

(0 =119728, ¢ = 0'69766.)

J. I H. G. F.
A 0-51589
C 0-96821
AA 0-22938 0-18712
AC 0-47781 0-28334
CC 1-05115 0-45659 .
AAA 0-11850 0-05953 0-10177
AAC 0-26244 0-10164 0-13766
ACC- 0-60567 0-18302 0-19425
CCC 1-44620 0-34725 0-28757
At 0-06589 0-02406 0-02506 0-06585
-A%C 0-15204 0-04451 0-03786 0-08335
A2(? 0-36257 0-08599 0-05983 0-10849
AC3 0-88791 0-17349 009857 0-14629
Ct 2-22418 0-36363 0-17026 0-20470
As. 0-03828 0-01102 0-00826 0.01322 0-0469
AC 0-09100 0-02162 0-01352 0-01848 0-0569
A3C? 022240 0-04381 0-02321 0-02656 0-0704
A2C3 0-55496 0-09243 0-04102 0-03978 0-0893
ACH 1-41157 0-20087 0-07573 0-06171 0-1162
A® 0-02290 0-00545 0-00321 0-00366 0-0080
AsC 0-05570 0-01120 0-00555 0-00557 0-0105
AC? 0-13876 0-02345 0-01025 0-00852 0-0143
A3CH 0-35131 0-05136 0-01881 0-01407 0-0198
A4 0-90490 011455 0-03668 0-02315 0-0285
AT e 0-00284 0-00138 0-00123 0-0019
ASC — 0-00608 000247 0-00201 0-0027
A5C? — 0-01294 0-00496 0-00314 0-0040
AC8 — 0-02948 0-00904 0-00586 0-0057
ACH — 0-06675 0-01887 0-00964 0-0093

Introducing the value (77) for 4c,, these become three linear equations in L, m
and N, of which I find the solution to be
L=M= n=10273(y—2)—10466
I =m = 03488 (y—2)—0'2378 (exact solution).  (79)
N = 0'11845 (y—2)—0'06328 J

This may be compared with the approximate solution obtained in § 16, which
2 A2
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may be referred to as ‘‘ Approximation A.” Inserting numerical values, this stands
as follows :(—
L=M=n =10273(y—2)—10273
] = m = 08488 (y—2)—0'2467 (Approximation A). (80)
N = 011845 (y—2)—00626

It will be observed that the error in Approximation A is greatest when y = 2,
when it is of the order of 2 per cent. of the whole value.

19. Pear-Shaped Point of Bifurcation—We proceed now to evaluate the exact
solution for the configuration at which the Jacobian ellipsoid gives place to the
pear-shaped figure. At this point we have

a = 188583, b =0814975, ¢ = 07650659,

2
n = ——= 0141999, 6 = 0413607,

Lo

the lengths again being chosen so that abc = 1. The values of the integrals
necessary for the evaluation of the potentials have been given in previous papers.™
The values of I/, M/, N’, I/, m/, n’ are now distinct, and are determined by six
equations of the type (¢f. equations (78))
, |

4011'—9 <£"?> - %JAAs &C.

, s e e .. (81)

10y—0(2L) = T &

Coz— Bigt) = UBO C.
in which the coefficients ¢, Cug, Cz, Cia, Cos and ¢y are now distinet, the condition that
the potential shall be harmonic being expressed by three linear relations connecting
them. The values of these six potential coeflicients have been calculated in my
previous paper ; inserting these and solving the six equations (81) I find the set of
values given in the second column of the following table, the values given by
‘“ Approximation A ” being given in the adjacent column for comparison :—

Coefficient. Exact solution. Approximation A. Difference per cent.
L - 156-4353 —10-1768 - 34
M - 015560 - 015329 -1
N’ - 0-04733 — 0-04677 -1
4 — 0-08468 v — 0-08424 0
m’ - 049850 - 062860 + 26
nw - 0-95103 - 1-18103 +24

* ¢Phil. Trans.,” A, vol. 215, p. 61, and vol. 217, p. 21.
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Clearly the error is quite large, but is concentrated in the coefficients 1/, m/, n’
which multiply terms in . It is remarkable that the cross section of the figure by
the plane « = 0 is given accurately to within 1 per cent. by this approximation.

20. It appears that Approximation A will give a solution accurate to within
2 per cent. for spheroidal figures, but of error varying from 2 to about 20 per
cent. for ellipsoidal figures. A tolerable approximation to any required ellipsoidal
figure could perhaps be got by regarding Approximation A as a first approximation,
and obtaining the error in this by interpolation between the two errors which have
been accurately estimated.

21. A second approximate solution, which has an interest other than that of
accuracy, may be referred to here. We may use the approximate equations (69)
to simplify the approximate solution (68), and so obtain a still less accurate
approximation, which we shall call Approximation B. The approximation is

k

k K322 - '
2(_)bc,&c.,. ... (82)

I/ = - % V=
=~ 5%

and the complete value of P, becomes

P0=:2L[(y—2)—§]< ) P )

In this approximation the quantity % is at our choice ; we must select it so as to
give as good an average value as possible for the approximately equal quantities

which occur in equations (69).
Choosing a suitable value of %, I find for the coefficients at the ellipsoidal point of

bifurcation
L=M=n=10273(y—2)—07705

I =m = 03488 (y—2)—0'2616 »(Approximation B).. . . (84)
N = 011845 (y—2) — 00888

Comparing this with the exact solution given in equations (79), it appears that
the error is as great as 20 per cent. when y = 2. :

The corresponding approximation at the pear-shaped point of bifurcation is almost
worthless, the error being one of fully 50 per cent.

The significance of these approximations will appear later.

22. We turn now to the evaluation of the terms of second degree in z, y, z
It has already been seen (p. 172) that p” = ¢ =" = 0, so that p, g, r are identical
with ¢/, ¢/, . Or, in other words, p, g,  do not involve (y—2).

- Let us suppose that in the general ellipsoidal solution (¢f. equation (73))

r[P——%fDP-I-»g]:;fs D*P] %)5 = fourth degree terms+4 (d@”+dgy’+dz"). . (85)
0
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Then on equating coefficients of a?, * and 2* in equation (59) we obtain

2
4d1—7£’4—9=An,. Y 1)
4d7)%QAn,..........(87)
4d3—ggﬁ—o S (88)

The value of 4d, 18 readily found to be*

4d, = 210JAA"‘O%IAA"‘ 'Z%'IAB— §1A0+4eh e e e e (89)
where ‘
do, = _%<L H, [l)‘f Hypt N HAC,> _3 <bf o Hanot 5 Hasot ﬁ"ﬁ‘HMB>
+ %—2 Lo+ 2 7 IAzB+ s Lo -« . . . . . . (90)

The values of 4d, and 4d, can of course be written down from symmetry.

It is immaterial whether we insert the values of L, M, N, ..., or of I/, M/, N/, ...,
in these equations in evaluating 4e,, &ec., since the contributions from L”, M”, N”, ...,
which are proportional to a*, b%, ¢!, ..., must vanish by § 14.

23. If we are content to use Approximation B, the solution of our problem assumes
a very simple form. For I/, M/, N/, ... are now proportional to o', 0%, ¢, ..., and

therefore
e, = ey = ¢, = 0 (Approximation B). . . . . . . (91)

Thus equations (86), &c., reduce to

ZPJAA_(%IAA_%IAB_EEIAC— 2519 = A’}’L, . . . . . (92)

and two similar equations.
The quantity An, which has been introduced for convenience only, is entirely at
our disposal. Let us take An = 0, then the solution of the equations is

p=gqg=r=0(Approximation B). . . . . . . (93)

 Thus, corresponding to Approximation B, the solution corresponding to rotation w
given by o*/27p, = n has for density

p= o= (o=o)(G+ i+ %) - ol (E () (D4 B 2T (o)

2p

* Cf. < Phil. Trans.,” A, vol. 215, p. 60.
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while the boundary is
2y 7 | P—C <lc >
S+E5+5=1- — —(y—2 e e
a2 + b? + 02 2P0 9 ( ) ’ (95)

and so is still ellipsoidal. So far as this approximation goes, it appears that the
shape of the ellipsoid, as given by the ratio of the semi-axes, depends only on
o*[2mp, ; it is the same as for a homogeneous mass of uniform density p,, equal to the
density at the centre of the compressible mass, rotating with the same angular
velocity.

24. When this somewhat unsatisfactory approximation is abandoned there is no
means of procedure except to calculate e;, ¢, and e, directly from equations (89), &e.

Suppose that instead of being given by equation (83) the tidal potential had been

given by
VT+€ AVT = (T1+€AT1) w2+ (T2+€AT2) y2+(7’3+ GA‘TS) 22- . . . (96)

Then on equating terms independent of ¢ in the principal equation we should obtain
the same equation as before, but in place of equations (86) to (88), there would be
three equations such as

AT,

Wpoa bc

4d,— L An+ ———

or, inserting the value of 4d, from equation (89),

2pT = B L= L= STt oy —2— An +WPA;20 L (97)
0

These equations become identical with equations (92) if we take
Ar, = dmpabee, &e., . . . . . .« . . (98)
and the equations then have the simple solution
p=qg=r=0, An = 0.

Thus the exact solution can be found by superposing the fourth degree terms
already calculated on to an ellipsoid which is a figure of equilibrium under an
additional tidal potential

e AVy = dmpgabee (e +egf +e2®), . . . . . . . (99)

this necessarily being harmonic, since ¢, +e,+¢; = 0.

25. Let o, ¥/, ¢ be the semi-axes of a figure of equilibrium under this additional
tidal force, these differing from the old quantities a, b, ¢ by small quantities of the
order of e. The equations determining o/, ¥/, ¢’ are (¢f. equations (88) to (41))

/2 0[
fym b bl — s == . . . . . . (100
I wpoa/b’ 7+ e, — Qmpdbc o ( )
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180 MR. J. H. JEANS ON THE CONFIGURATIONS

and two similar equations, accented letters all referring to the new figure of
equilibrium, and the value of 6 being now given by (¢f. equation (41))

y—2 '
6’=%§’,2,—0,,. Co oo (101)
so that, by comparison with equation (41),
0a't'c = 6abe. . . . . . . . . . . (102)

There will, of course, be a solution for the compressible mass corresponding to each
solution of these equations, which are virtually equations giving a solution of an
incompressible mass under tidal forces.

When the main tidal force disappears (v, = 7, = 7, = 0) the solutions will corre-
spond, except for small tidal terms, to Maclaurin spheroids and Jacobian ellipsoids.
The compressible solution which corresponds to the Maclaurin-Jacobian point of
bifurcation will represent a point of bifurcation for the compressible mass. Let us
proceed to determine this point of bifurcation exactly.

At the point of bifurcation the configuration is spheroidal, so that e, = ¢, By
subtraction of corresponding sides of equation (100) and the similar equation in b,
we obtain

, 1
J’A'—JB =0 <5,‘2“*6172>,

or

(0 =0 (T y5—0fa/?) =0. . . . . . . . (103)

The spheroidal series is determined by the vanishing of the first factor, and the
ellipsoidal series by the vanishing of the second factor. At the point of bifurcation
both factors vanish, so that ¢’ = 0/, and

' . . a/4J/AA — 6/,
or again, using relation (102),
Iy =0d%.. . . . . . . . . . (104)

This equation, together with (100) and its companion, will determine the values
of o/, ¢ and &’ at the point of bifurcation.

26. The values of these quantities differ by terms of the order of ¢ from the
corresponding quantities o, b, ¢ at the Maclaurin-Jacobian point of bifurcation,
so that we may suppose that

1 +€A<‘1—2>, &e., o? =o' +elo’ . . .. (105)

1 —
a” o \a

The equation of the figure of equilibrium is now

2 2 - 4
w;rz,gf+ 4 +e[(m2+y2)A<—1—>+z2A<c—12->+ L + ],

b? a? ab
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and this agrees exactly with the figure previously considered if we take

1 2 1 27 R
A<&~Z>=—c§; A<C—2>=—c—4-. Co ... (106)

Using relations (105) and (106), equation (100) transforms to

? 0
po[Tom T o O]
ae| Fa wpoabc 27rp0abc o’

2 A 2pb
+€0&bc [46]+p <2JAA—EEIAA.>—~:‘§ IAC_ pr;bc——%j‘ = O. . . (107)

The first line vanishes in virtue of equation (38) and the equation reduces to

: 2 ro  2pd
461+]o<2JAA"'a‘§IAA>—gg Ac_‘é%=A%, ce e (108)

which agrees with equation (86), as of course it ought to do, and there is a similar
equation agreeing with equation (88).
27. Equation (104) may be written in the slightly symbolical form

aledn+eA(abed ) = 0a’,. . . . . . . . (109)
and the condition which determines the ordinary Maclaurin-Jacobian point of
bifurcation is

a4JAA = U.

Thus equation (109), which expresses the condition to be satisfied at the point
of bifurcation on the compressible series, reduces to

A(O&GCJAA) - O. . , . . . . . . . . (110)

Now from the definition of J,, we have

o [ dx
a CJAA - jo (1+>\/a2>3 <1+>\/02)%,

whence we readily find that equation (110) is equivalent to
6IAS<ZO—2~>+IAQC(1"§) =0. . . . . . . . . (111)
a c |

Equation (111), together with equation (108) and its companion, determine the
values of p, » and An at the point of bifurcation on the series of compressible
configurations. '

VOL. CCXVIII.—A. 2B
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28. The material for numerical computations has already been given in § 18,
Using the exact solution there given, I find, by direct computation from equation (90),

de, = de, = —0'03404 ; 4e, = 0°06808. . . . . . (112)

From equation (111), and the companion to (108), I now find

P~ _0016037; L =0056337, . . . . . . (113)
a c
and equation (108) now gives
Aw®
= = —0°04400.. . . ... (114
An 271'/)0(47)(' )70 ( )

These quantities are all comparatively small; they would all have vanished under
Approximation B.

Second Order Solution.
29. We now pass to the solution of higher order still. On equating terms in ¢ in

equation (50), we obtain
L _ARL 2, 2
— OV, (1)=AE,) +dn (2 +9°)
o AN :
=—-0[Q0-—(y—2) Po<2—“—2>+—}3—(7—2) (y~3¥<z &5> ] . (115)

30. From equation (28), taking terms as far as first powers of ¢ only,

Ei—l-AEi:wabcrnlq2<1-—%g)>dq2]%,. .. .. (116)
0l Jg

in which the lower limit g is given by

2 2

x Y z
+ +
a’+x  OP+N P+

SHelg=¢ . .. (17)

As far as ¢, equation (12) gives

¢ (q) = c[P=LfDP+y /DL, . . . . . . (118)
while from § 8,
e 2 Y 2 119
Of= st - (119)
D 1 Lo o 1 1\ <:| Lo )
prind e el v il br il e Ew iUl br it oo (120
4 <“2 C¢2+A>af2+<bz Zf2+?\>8n2+ ¢ 02+A,>8§2 : 120


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OF ROTATING COMPRESSIBLE MASSES. 183

The value of D/¢? is independent of ¢, and ¢ (¢) may be rearranged in the form
# (@) = | Pt @ B P+as (g7 2(5) 2],

whence, on differentiation

H

so that

a( _%@): 2[ _eDp, _6_< @’ \<]2>2 ]_i 1 Q>2
q<.1 o ) =T 2P+3220&2+>\) e 32q<q2 P

This gives on integration, since D/q? is independent of ¢,

12/_a¢(9)> 2 .1 _4[__?9 __e_<1 w2<22:|
Lq@ o7 dg’=3(1-¢)| 1 4q2P+3220&2+7\) q?:)P
—_ (1= D_>Z
96(1 q)<q2 P .. 00 (12D

_ The value of ¢* on the right of this equation is the root of equation (117), ¢(q)
being given by equation (118) in which f is in turn given by equation (119). Thus
¢* will be obtained by the elimination of ¢ {g) and f from equations (117) to (119),
omitting terms in ¢. From these three equations we obtain

f==¢(q) =—e[P—1/DP+¢s/*DP]
so that fis a small quantity of the order of ¢, and, omitting terms in ¢,

‘ ¢ (q) = P
which is independent of g. Equation (117) now gives, as the value of ¢?,

2

m ¢
q2=20—;§1—>—\+eP. Ce e e (12e)

The coefficient of ¢ on the right hand of equation (121) now reduces to
22 T4/~ 22 \2 J_D 0 22 ><\P:|
R [1 <2a2+>\>][8 b= 64(\2& 24 q)
- 1 (2 |G
a’ X 9

The value of P is given by equation (56), and that of D/g* by equation (120).
From these we obtain
2 P= < 1
g EESY
Dy'p _ 1 1 <l _ _1__>]
<q_z) b _2[24L <a2 o+ 7\> 161 <b2 bg+>\> ¢ N d

2B

> (12Lg2—dny’ + 4mE* + 4p),
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184 MR. J. H. JEANS ON THE CONFIGURATIONS

whence we readily obtain, writing A for ¢®+\ and so on,

o/

\ ,y/,2
@A-)<ZL 2 4+ 93l ézéz 23 P)

+~g~[1—<z%ﬂ [z 9A<12L Coranl sam Z 4 4p>:l

2 2 2
+[71‘7—“1?<2 %> +T2‘7<2 95&) J [242 102 g | R 129)

31. From §8, the value of V,(1) is given by ‘
V(1) +eA V(1) +0V, (1) = —rabe | [f+(1)] SZAA, L (124)
. 0

AE, = —rabe r {(Z

in which the value of ¢ (1) is now (¢f. equations (12) and (47))
¢ (1) = e[P—1fDP+¢5/*D°P]
(D D4l Dy D
+& [Q—1/DQ+de f*D*Q— 4552/ DQ+...]
+terms in &, &e. . . . . . .o o ... (125)

Thus the value of JV, (1), being the coefficient of ¢* on the right hand of equation
(124), is given by

IV, (1) = —rabe | [Q=3/DQ+ o f DQ il f Q.1 D
+Lrabe j [P FDPY 1 FDPR — g f3D4P2]
32. Collecting and rearranging terms equation (115) now becomes
[ [Q=1/DQ+ e DQ=idosf DQ+ .1 B — 00,
=60 (y—2) [ (V—3)< > ~ [P+ (y—2) P"] <>3 ﬁiﬂ

j [DP*—% fD*P*+ 1mf2D3P2*"§’IGf3D4P]

AE, 0 o\ a

—W—hm(/o%—g/). R (126)
This is an equation for the determination of Q, all the terms involving Q being on
the left hand, and all the terms independent of Q on the right. The terms on the
right are all of degrees 6, 4, and 2 in @, ¥, #, so that the value of Q will clearly
consist of terms of degrees 6, 4, and 2 in @, y, z. Further, from the linearity of the
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OF ROTATING COMPRESSIBLE MASSES. 185

equation, it is clear that the value of Q will be the sum of a number of contributions
arising from the separate terms on the right.

Consider now what is the contribution from the first term on the right. Or, in
other words, consider what would be the solution if the whole equation were
reduced to )

[, [R=1/DQ+ /> DQmoifos/* DR+ .. ] 2 60,

7 \
3’523

= 30(y-2)(,-3)(2 %)
The solution would be
2\ 3
Q= _%(y_z)(y_3)<zf72>, N Tr0

for, in accordance with the principles arrived at in § 14, this value makes the integral
on the left vanish, and the equation is then satisfied.
Similarly the contribution from the term in P”, on the right is

QO=(y—2)2P/’O<E§>, C e e (128)

for P”; is equal to % (22*/a”)’, and so the integral on the left again vanishes.

The contribution from the term in P’, in equation (126) cannot be so simply
evaluated. If, however, we are content to use Approximation B for P/, then P,
becomes proportional to P”,, and an approximate solution is

Qoz(y_z)Pfo<z§>. L (129

On referring back to § 16, it becomes clear that the accuracy of the approximate
solution is of the same order as that which we previously called Approximation A.
Again, if we use Approximation B for P, the contribution from the whole second
line in equation (126) will be
Q= 0,

for the whole second line in question now represents merely the second order terms in
the potential of a thick homeoidal shell, and so vanishes.

We proceed next to the contribution from the term in AE, From equation (123)
it appears that if we use Approximation B for the values of I, M, N, ..., and also use
equations of the type of (69), the first line in AE, as given by equation (123),
becomes a function of (Zz?/a?), while the remaining lines vanish. -

Tt follows that an approximate solution is

N AE, '
W = wabch
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186 MR. J. H. JEANS ON THE CONFIGURATIONS

There remains the contribution from the term dn (x*+y®) on the right of equation
(126). This contribution will consist of second degree terms in (,, which represent
merely a step along the fundamental series of ellipsoids to allow for the altered
rotation, and the requisite terms can be easily calculated.

Collecting all the approximate partial solutions which have been obtained, we find
the complete approximate solution

Q= —(y- 2)[ (y— 3)\ §—>—[P' (y— 2)P”0]< §_>J
AE;

g 2 + termsin dn. . . . . . . . . . . . . (130)

Clearly this approximation is of a degree of accuracy comparable with that of our
previous Approximation A for P;, with which it may be compared. This former
approximation can be put in the form

2\ 2
P, =%(y— 2)<22>+;£@'06 nAn.. . . . . (131)
83. A less good approximation, comparable with the former Approximation B, can
be obtained by further simplifying equation (130) by the help of approximate
equations such as (69). The value of Q, simplified in this way is found to reduce to
a function of (Za?/a?), so that the whole solution becomes ellipsoidal.
34. The accurate solution for Q, may be supposed to be

Qo = Q/0+Q,/o ('}"‘2)’

where Q") (y—2) is the part of Q, which is accurately given by formulse (127) and
(128); thus

Y= [-2)+4(2 L)

I have calculated the value of @, accurately for one configuration only, namely,
the ellipsoidal point of bifurcation. At this point @ = b and w, y enter only through
2*+y°.  Let us write

Pty =wt; 2+ =

The general value of Q, will be of the form

R g ) 2y 4V o
Q0=—ﬁw°+38wz+31 w¢+Uz+ fw+28 w'’ {»t 4 2u 02+2~Zz“.
o a’c! atc® a'c! R ¢

We may further put
R =R+R"(y—-2), &c

then the values of R”, &ec., are
" =[5 (v—2) +§] o, &e.,
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and the value of Q) is ,
Q%=§%v+§iwv+
so that
Q = Ro'+ 38w+ 3T0% + Ul + /o' + 2802+t { + 2u'm? + 2v/E% . (132)

Let us now assume fhat

j ( —‘—fDQ,“{" fz DQQI — » - f3 DSQI)
0
= I, (5w’ —90w'2*+ 120w — 162*) +h2(3w — 24w+ 82%) + hy (w?—27%), . (138)

this being the most general form possible, since the integral in question is necessarily
a zonal harmonic. In calculating the value of DQ/, we may use the transformation

X 10 o\, A o
=L@l

and on equating coefficients in equation (183), we obtain

-_ODR'_._l /__/> 1( n n />
5’“”‘50[2{5 4A5< 1 36R + 56 )+ 4A2576R ”Acms 40272T

1 BN g BN LN ,>]dx
- 2304A3( "A°2304R a'c?A*C i ATG oA a’*AC? nce 28T+ 6(}3 7200 A
(134)
. @ I', B 1 BN 1 A e
342_—‘[0[-&1 4A5< A16 + 04';) 4A4< + 065>
1T /a2
64 (TA‘ZGM'“ o AC O 4022‘“')
1
~32A3( TR i 65 4@272T’)
3 4+ N7 ’ 3x? o\ ’>]d)\
+ 2304A2< 0A42304R 402A20 3848+ AN CE 288T/ + 603720U Iy
(185)
- “few 1 1
hs:jo[%—4A< A8 +——64V> AA.».‘< ZA L6r +“2—G—4S>
_ 82A.< 4A2641 + TEAC 168"+ 102 =924
1
+ 64A,2< A2 BT6R/ + P ZAC ey 965+ perer 72T'>
3 >\ 7 3)\ , 3)\ , , :ldk
_ 2‘§0’iA< D F2804R+ 3848+ T 288T 60373011) D
(136)


http://rsta.royalsocietypublishing.org/

/an
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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35. The value of P 1s
P = Lo*+ 2mw?¢? + N {4+ 2pw? + 20,
whence we find
- DP? = Ro'+ 330+ 3T ¢ + UL + 1o + 280702+ + 21w’ + 2087,
in which

R = A x 6412 + 8% x 8Lm
= 48Lm 4 (4m’+2LN)
= 16 (4m*+2LN) | 40mN
= 16mN 56N*
T o= 144pL 2 (8pm+41L)
8§ = 8 (8pm+4rL) | 6 (4pN+8rm)
t = 4 (4pN +8rm) | 120N
u 32p° 8pr
b= 16pr 247*

We may now assume (¢f. equation (183))
[, DP—1f DIP4 s f DB = D)
=j1(5w6—90w4z2+120w2z4—-16z)+32 (3w — 24w+ 82*) +7,; (W' —22%), . (187)

in which, on comparing coefficients, we obtain

TR 1/ n A e 1 \?
5y, = Jo [-——_—< . 36§K+2—06£>+ < e 5761 + 22A019255+ 72@)

AT BAY @A T92A" res
_1 3\?
- 9216A3< 64523043“ FATCINS oy 9T 7@730@)] A

(138)

There are corresponding equations for 3j, and j; but these are not written down
as they can readily be obtained from equations (135) and (136). To change 8, into
375, change all accented coeflicients into black letter type, and change X, A°, A\
wherever they occur explicitly, into &\, $\° 4)® respectively. The same procedure
changes /i, into ;.

The values of these coefficients at the ellipsoidal point of bifurcation can be
calculated from the material already provided in § 18 and the values of p and »
given in formule (113). Using the exact solution throughout, I find

5/, = 0°01931 (y—2)—0'01473,
3), = 001080 (y—2) +0°00576,
7y = 05715 (y—2)+0°4094,

all terms in (y- 2)? vanishing in accordance with the result of § 14.
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36. We turn now to the evaluation of AE;. The potential of the whole mass at
an internal point, V,, is given, as in equation (20), by

Vi=py (V:(1) +eAV, (1) + ...) = (py—0) (B +eAE;+ ...).
We have also
VAV, = —dwp = —4dwpy+ 47 (py—0o) <z§ +ePy+'Q,+ >
whence, by comparison

V?(AE) = —4xP, = —47(61—;—@0 + 27? W+ Nz “r pr +2' "> . (189)
We may assume

AE; = — 47 [kt + 3k,w'2® + 3kaw’s* + k2’ + ksw' + 2kw’? + k2 -+ 2ka0® + 24,27,

in which equation (139) necessitates the following relations between the coefficients

. ‘ L 2
36k1+6]62 = ;]"E; J( 16k5+ 4k6 = —a%z-a
. 2m - 2
4 4:8k2+ 36]63 = CW: ILSICb—I-— _[Z/(;,] = -0—4—,
i 1 2k3+ 30k4 = EN—S—, Z]Cs + k&) = O.

By comparison with equation (123)

L

b, _4abc[LJA 2 L

I 5—';23511&&0 ‘]"9’2 <64 HA5+3Z I{Aéo'i' 24:VHA302>J,

k, = Tabe ( 2pT o~ BT~} %IW],

2k, = Yabo [21‘ Lo+d ”’”Im—gZ <64(%ZHA3+32 %HA20+24§ HAC.Z>].

By direct computation from these values 1 find

Ak,
0019734 (y—2) —0°021633,
L 734 (y—2)
Ak _ _0:007359,
abe
8ks _ _ 0017022,
abe
VOL. COXVIII.—A. 2c
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37. We now return to equation (126). The solution has been assumed to be

Qo = Q,o”l"('}’_z) Q”o,

in which (y—2) Q”, is the contribution from the terms on the right

06r-2)| 5 (-3 (2 5] (-2 P, (25} |.

1t follows that ), must satisfy the equation

C v YoY% *3 TV3(Y oI\ ’
L [Q =1/ DQ + ¢ f* D*Q —odoxf* D'Q + .. ] (T —6Q,
. T . dX
- —9(y~Z)P/O(2&—2> o[ PPy D

AT,
W@bc

+0n (22 +y°).

Substituting the values which have been assumed for the various terms in this
equation, 1t becomes
hoy (5w® —90w*2” + 120w%" — 162°) + h, (3w* — 24w + 82") + hy (w* — 227)

R, 88 ., 3T u o, 28 4, t ., 2w v,
—0 [_E ’Ll)6+ i ’ZI)4ZZ+ 4 7/0224+ =T Zb+ 3 w4+ 1 ’LU2Z2+ = Zl-l— - ’wz+ — Z
X/ a°C a’c 4] a a C C a 4

w? 2\ /L 2w/ N/ 2 2

=—0(y—2) <;9 + g) <&—8 w'+ &chwzz2+ = 2+ -fi W+ =3 2
+& [ 71 (buf—90w'2? + 120w — 162°) + 7, (3w' — 24w*%? + 82*) + 73 (w*—27%) |
* &-%é Leyit® + Bkstw'a® + Bl + kit + ko' + 2kgw*2” + ki + 2k + 2427

+n(@?y?). . . . o (140)

Equating coefficients of w®, w'2?, w* and 2%, we find

517,1—9[[{/“(70;22) L/“zi =fat o, o (141)

— 90k, —0 [318"“ (V‘QL£?4’T‘/“2+I‘/62): Ty 103)]‘: (142)
120}&1_9[31"—(y—zlg’azq-zm’c?): — 120 j]+%, L (143)
_ 16h1——9[U/_ (v;lf) N’cz)j Y j/g; (144)
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On multiplying equations (141) and (142) by 18, 1, and adding, we obtain, with
“the help of the relations of § 36,

s (R’—-(y(;f) L’oﬁ] ) [ss: (y—2) 12m’a2+L’02)] _

L
8°

% (145)

aet
Equations (142) to (144), treated in a similar manner, give

4 [38’—( 2) (2m’a2+L’ 2)} [3T/——('y-—2) (N'a® + 2m’02)} _ 2 m (146)

asct atc?

(147)

9 [3T/—<y—2) (N'a?+ 2m’02)] 15 [U/—('y-2) N'c?

ff (/,8 C12

These equations, taken with one other, suffice to determine R/, &', T/, U’. For
additional equation we shall use equation (141).

The values of j, and % have already been given. For 54, I find, by direct
computation from formula (134),

5h, = 0°00152R'—0°013458"+0°03926'T"—0°03813U’,

so that equation (141) reduces to

[ ! 27 )
—G{R (V&f) L“J +0°00152R/ —0°0134558" +0'03926'1"— 0031831’
= 002214 (y—2)—0'02347. . . . . . . (148)

Solving the system of four equations (145) to (148), I find

——(‘y——2) LIOb2

a12

= 0°04794—0'04309 (y—2),

38 —(y—2) (2m'a*+ N'c?)
aset

= 0'1894—02573 (y—2),

3T —(y—2) (N'a?4 2m/c?)

L = 0'4388—0'6707 (y—2),

—(7—2) N/Cz

= = 0'2605—0"5077 (y—2),

leading to the values

R’ = 04155 —1'7799 (y—2 ),W[
38 = 01894 —1°4585 (y—2), | ,
(y=2) | (exact solution). . . . . (149)
3T/ = 0°0506 —0°4124 (y—2), (
U’ = 0°00846 - 00375 (y—2). |

2¢c2
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This may be compared with the approximation expressed by equation (130), which
gives :

12
Rl = (')/"‘2) L/az__ _42_(1 ]CI 9_4 — 0.3981 -—-1.7691 (y—z),
q/:: ‘—‘2 2m L/" = ac ::0.2013 _1.4659 _2’
> (')/ ) ( ) abc 9 (')/ ) (Approxima-
. 4.8 t. A ‘ 150
T/ = (y—‘2) (N/a/2+ 2‘/)’&'02) — fb—(‘ 8]03950—- = 0'0452 —0°'4090 (‘}/'—2)’ 1011 ) ( )
12
U= (y=2)N'e'= -1, = 0°00355— 00381 (y—2).

The error of Approximation A is now something like 5 per cent. in the terms
independent of (y—2), and there is also an additional small error of less than 1 per
cent. in the terms containing (y—2).

38. We pass now to the discussion of terms of degree 4. Equating coefficients of
w', w%*, and 2* in equation (140) gives

3h2_9(r’—2('y—8—2)p002] 3y 4k

a 8  abc’

Couh 28’—-—2(«/~2)(7‘a2+]002)]___2432 8k
24, 9[ i i O PRI (151)

t/— 2(y 2)7’0]_% Ay
Bhs 9[ 8 +wbc' )

Following the method of the last section, the last two equations may be replaced
by

S[r_2(7 2paJ [ (y— 2(7°a+pc)] _%%{97‘ . (152)
[ZS——Z(')/ 2)(400 ]?__)] [t—-—(y 2)7'0] _%gz L (159)

The three equations (151) to (153) determine r’, 8" and t'. The values of 4k,fabc
and of 3j, have already been given. For 3hA, I obtain by direct computation from
formula (185)

3hy, = 0°0109721" —0°064324s' +0°094925t
+0°01031R/—0°0072838'—0'04422T"+0°32343U",

which, on inserting the exact solution (149) for R/, 8/, T’, U’, becomes

3hy = 0°010972r' — 00643248+ 07094925t +0°00179—0"00166 (y—2).
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The smallness of the last two terms of course measures the closeness of the
approximation (180).
Equation (151) now reduces to

/ 2
~ [r =2 (”a;‘2) fad ] +0°010972r' — 00643245 +0°094925t/
= —0'00848+000310 (y—2). . . (154)

On solving equations (152) to (154) directly, I find

2

Y —2 (v—2) pa . .
(Vas JPE _ 09074001055 (y—2),

28' =2 (y—2) (ra® +pc?)
atct

= —0°07096+ 008440 (y—2),

t'—2(y—2)rc®
8

9 ; = —0'14008—0'02813 (y—2),

whence the values of 1/, &, t’ are

¥ = 008755 —010962 (y—2),
s = —0'01727 +0'04871(y—2), »(exact solution). . . . . (155)
t = —0007862+0'02511 (y—2).

This may be compared with Approximation A, namely,

! = 9 (y—2) pat— Lhs @
v = 2(y—2) pa abce’&c"

which leads to the approximate values

= 006590 —0°06509 (y—2),
s = —0°00728 +0°02815 (y—2), »(Approximation A).
t' = —0°007929+0'02669 (y—2).

The percentage error is large, although the absolute error in the coefficients is
fairly small. This will be readily understood on noticing that under Approximation B,
v/, ¢ and t’ would vanish altogether.

39. Finally equating coeflicients of #* and z* in equation (140) and making use of
the relation k, = —2k,, we obtain ”

PAVY

8k

—_ — 1/ 8
ha= =2 0=t 22+, . . . ... (156)
. _2}1/ _ 17 16k8
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Multiplying by 2, 1 and adding,
2u” | v
3=—29———>,......... 158
n < Tt (158)
an equation which may be used to replace (156).
By direct computation from equation (136), I find
hy = 0197690’ —0'58215v’
+0°067061" +0°01164s'—0'61497t

+0°04270R’ + 0037785 — 0075301/ — 11894
= 0197690 —0°58215v/ +0°02348 — 011118 (y—2),

so that equation (157) reduces to
0'39538u' 428142V = 0°0212+0°0794 (y-2). . . . . (159)

Equations (158) and (159) are adequate to give u” and v/ in terms of any assigned
value of dn. We require especially the solution at the actual point of bifurcation of
the compressible series, and to obtain this the two equations must be combined
with a third equation expressing the condition for a point of bifurcation.

The third equation-is
3 (CI/GCJAA)Z O,

or, transforming by the method of § 27,

6u’ ¢ v/ 24p° - 6pr 3
TIAAA—I— C—ZIAAC == ‘—OL"L]ZZ" A‘+ 'a“% HA’C + é‘(‘/‘THAZGS.
Inserting numerical values, this becomes
0'24919u’+0°20878v' = 0°00024. . . . . . . . (160)

From this and equation (159), I found by direct solution

' =—000550—0"02651 (y—2)
; (161)
v/ = 000778+003195 (y—2)
and equation (158) now gives
I =-—001292-005495 (y—2). . . . . . . . (162)

The solution which has just been completed, combined with the two exact
solutions (127) and (128) previously known, will give the exact solution for a
compressible mass at the point of bifurcation at which the pseudo-spheroidal series
gives up its stability to the pseudo-ellipsoidal series.
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40. The rotation at this point of bifurcation is given by

2

=n+eAn+én

L7,

J— 2
=0'18712—0'04400<’)O "\ (0012924005495 (y— 2)]( ">. (168)
\ Po - Po

The first point of interest about this equation is that the term in (p,—o) is -
independent of y. This must necessarily be the case, for we have seen that for an
incompressible mass, regarded as a special case of the compressible mass that has
been under discussion, y—2 is infinite while p,—o vanishes, and the product of the
two remains finite. Thus for an incompressible mass (163) reduces to

o’ [2mp, = 0°18712,

which is the true value, but if there has been a term in (y—2) multiplying (py—o),
equation (163) would have led to a wrong value.
When y = 2, equation (163) reduces to

o’ [27p, = 0°18712—0"04400e— 0012926 — ...

Although we cannot be perfectly sure, the series is almost certainly convergent
right up to the limiting case of & =0 or e = 1. In this case, it appears to converge
to a limit of about «’/27p, = 0°120, but unfortunately it is impossible to evaluate the
limit for other values of .

2

A more important question is the relation between « and p at the point of
bifurcation. :

We have evaluated p as far as ¢, but for comparison with the value of «* given by
equation (163), it will be enough to evaluate p as far as . Furthermore, to avoid

a very complicated integration, we shall use Approximation B for the terms in ¢ and
so take
/,82 2 22 z2\’ 2
p=p0-_(p0_ )[ +z2+ +€1]< +:Zg +—;3>‘J7

where 4 = 4 (y—2'75), this being the approximation given by equation (84). Byv
a simple projective transformation, it follows that the mean density is the same as
that in a sphere in which the law of density is

{2 ot
p= Po—(Po—U')(\@ +€'7;4> .

As far as terms in ¢, the radius of this sphere is given by 7, = (1 —%ey) a, and the
mass taken as far as ¢ 18

4,7rj.? pr? dr = 47[—:}/) (p,—-o’)<7405 +en To A>:I
g ’ . 17 a
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196 MR. J. H. JEANS ON THE CONFIGURATIONS

whence the mean density, as far as ¢, is found to be
7= po(l=Be+5e’) = py[1=Be—1hoe— ...+ F5(y=2)+... ] . . (164)
From these equations we obtain
w2 » P
5= 0°18712+0°06827¢+(0°01602+0°07098 (y—2)) ¢ +.... . . (165)
P
Ratwo of Centrifugal Force to Grawvity.

41. [§41 revised August 31, 1918].—The ratio of centrifugal force to gravity is
interesting only when it becomes equal to unity. When this occurs a stream of
matter is ejected at the points at which centrifugal force equals gravity. Centrifugal
force will first become equal to gravity at points which are furthest from the axis of
rotation, and these will be points on the equator of the rotating mass. Considering
a point on the axis of z, the condition for centrifugal force to be equal to gravity is

oV[ox+wx = 0,

or

0Qfdx = 0.

Since, by equation (30), Q = ————1— p' '+ a constant, this may equally well be
Y=

expressed in the form
0pfox = 0.

The general value of p is given by equation (45). On the z-axis this reduces to

p = py(1—eF),

2 4 2
F="“—2+E[L”§ 2”?}% [R”“r +gl‘§—]+-~-- ... (166)
a a (22 06 o a

where

8

The intercepts on the axis of x are determined by the condition p = o, and so are
given by F' = 1. The solution of this equation is found to be

x? L 2 R r 2u /L 2 oL 2
= 1mel g ) e R e B (e B (T B+ )

\

The points on the x-axis at which 0pfox = 0 are given by 0F/[dx = 0, so that it
appears that 9pfdx will just vanish at the extremities of the x-axis if 0F/dx vanishes
for the value of « given in equation (167). ’

The equation 0F/dxz = 0 becomes, on division by 2x/a’

2L [« SR or [ 2u
1+€[7;<—5/ —Z—)-] [ > (a2>+&‘2‘:]+...=0,
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and, on inserting the value of x*/a® given by equation (167), this becomes

[T ] [ 22
_a a o a (27 a” \o a .

42. Let us examine in particular the special form assumed by this equation for the
special configuration at which the pseudo-spheroidal form becomes unstable, giving
place to a pseudo-ellipsoidal form. °*Inserting the numerical values for L, p, R, &c.,
obtained in §§ 18-89, the equation becomes

L+e[(y—2)—10509] +¢* [% (y—2)’—0'4063 (y—2) —0°0510] +... = 0. . (168)

For a given value of y this equation determines the value of ¢ for which centri-
fugal force just outbalances gravity as the pseudo-spheroidal form gives place to the
pseudo-ellipsoidal. '

For instance, for the value y = 2, the equation becomes

1—1'0509¢—0'05106—....

The values of ¢ obtained by using terms as far as ¢ and ¢ respectively are 0°9516
and 09112, The true root is perhaps somewhere near e = %. Thus a mass of
rotating matter obeying LapPLAcE's law (y = 2) will throw off matter from its
equator before reaching the ellipsoidal point of bifurcation if ¢> %, or if o is less
than 5p. :

The root e = % agrees well with the corresponding quantity in the two-dimensional
problem. For cylindrical masses obeying LaAPLAcE's law (y = 2) the problem can be
solved exactly and the root is found to be ¢ = 1, giving o = 0.*

Equation (168) may more usefully be regarded as giving y when the value of e is
assigned. The only value of ¢ which is of any astronomical interest is the value
¢ = 1, the value for a mass whose density reduces to zero at the boundary. Putting
¢ = 1, we obtain an equation giving a critical value of v.

From terms as far as ¢ only, the value of v is clearly enough

y = 2°0509.
On including terms as far as y*, this value becomes
v = 2'1521.

These values of 5 appear to be converging to a limit; we cannot state it with
great accuracy, but we shall perhaps not be far wrong if we assume it to be y = 2°2.
Here again we may compare the problem with the simpler two-dimensional one in
which, as follows from what has already been said, the root of F = 0, when ¢ =1,
is y = 2 exactly.
* ¢Phil. Trans.,” A, vol. 213, p. 471,
VOL. CCXVIIL—A. ' 2 D
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The Influence of other Physical Factors.

43. The discussion from § 10 onwards has been limited to material in which the
relation between pressure and density is of the form

p=«p'—cons, . . . . . . . . . . (189)

an equation which implies that the mass is composed of matter of similar properties
throughout. In an actual mass there must be at least some tendency for the
substances of greater atomic or molecular weight to sink towards the centre,
although 1t is far from clear to what extent this tendency will actually prevail
under astronomical conditions.

In equation (169), y is usually regarded as expressing the measure of a property
of the material, being the ratio of the specific heats when the matter is gaseous. We
have, however, only used this equation in its differential form

dp =kyp"*dp.. . . . . . . . . . (170)

Now with any structure whatever of the mass of matter under consideration the
surfaces of constant pressure and density must coincide. Our use of equation (170)
has in no sense referred to a change of state of a single element of matter, it has
referred to a passage from one surface of constant density to the next. Thus, in

_strictness, y refers to the arrangement of the matter and not to a physical property
of the matter. In the case so far considered in which the matter has been supposed
to have the same physical properties throughout, the two meanings become identical,
but when the mass under discussion is an aggregate of imperfectly mixed types of
matter, it becomes important to distinguish clearly between the two meanings.

When p and p both vanish at the surface of the mass, equation (170) is equivalent to

dlog;;:%ollogp,'. N € 1 4

where the differentials are supposed to refer to passage from one surface of constant
density to the next. In passing from one susface to the next, p will increase partly
on account of the increase of pressure, but partly also on account of the higher
atomic weight of which the materials of the layer of higher density may be supposed
composed. Thus we may suppose equation (171) replaced by

d,logp=<j—/1;+;1;>ollogp,. N 0 6]

where yy is the value of y defined by equation (169) as a property of the material,
while y, is such that the additional term on the right of equation (172) represents
the increase in d log p owing to increase of atomic weight of the materials as we pass
to layers of greater density.
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In any arrangement of matter whatever, v, will have some value for each layer of
constant density, being virtually defined by equation (172). There is no reason to
expect that y, will be constant, or even approximately constant throughout the mass.
But in the present complex problem we must be content to discover tendencies rather
than exact results, and so may think of y, as a constant. An increase of atomic
weight on passing to layers of greater density will give a positive value to y,, while
similarly a diminution of atomic weight would give a negative value of y;.

The whole of the foregoing analysis will now apply to the present case if we put

L1 X (178)
Y YM VA

Tt has been seen that for values of y less than a critical value, which may be taken
(although only as a rough approximation) to be 22, it will be impossible for the
rotating mass to assume the ellipsoidal form, and so impossible for it to separate into
two detached masses. The condition for assuming the ellipsoidal form now becomes

1 1
—— <22 (174)

Thus, if 7y, is positive (atomic weight increasing towards centre), the critical value
of vy will be greater than 22 ; with y, negative, the critical value of yy will be less
than 2'2. It is possible for a heterogeneous but perfectly incompressible mass
(yar = ) to fail to attain the ellipsoidal shape if vy, is small enough—.e., if the
layers increase sufficiently rapidly in density from increase of atomic weight alone.

44. In the foregoing discussion we have considered only the effects of continuous
changes of atomic weight. Entirely confirmatory results may be obtained from a
consideration of excessively abrupt changes.

Let us consider only the simplest case in which the mass is formed of completely
separated layers of two substances only, one very light and the other very heavy—
to make the picture definite, let us think of an inner mass of iron vapour surrounded
by an atmosphere of hydrogen, and let us suppose the density of the hydrogen may
be neglected in comparison with that of the iron, so that the gravitational field will
be the same as if the iron alone were present.

For any given value of » we can draw the equipotentials Q = cons., and the
boundary of the mass of iron must be one of these, say @ = C,. Proceeding outwards
and drawing the exterior equipotentials we must in time come to one having a double
point, say Q = C,, and at the double point on this equipotential centrifugal force will
be exactly equal to gravity (3Q/on = 0).. The space between the equipotentials Q = C,
and Q = C, can be filled with hydrogen without matter being thrown off by rotation,
but clearly no greater volume of hydrogen than this can be retained.

As the rotation o increases from zero upwards, the equipotential 2 = C, starts
from infinity and moves inwards, so that the maximum volume of hydrogen which

2D 2
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can be retained continually decreases. With an allotted amount of hydrogen, the
ellipsoidal point of bifurcation may or may not be reached hefore matter has begun
to be ejected from the equator of the figure.

The simplest case for accurate discussion occurs when the core is treated as
incompressible. In fig. 8 the thick curve represents the cross-section through the
axis of rotation of an incompressible mass at the Maclaurin-Jacobian point of
bifurcation, . while the thin curve represents the equipotential @ = C,, which has a
series of double points round its equator. If the volume of light material
surrounding the core is just equal to the volume between these surfaces, matter will
begin to be thrown off at the equator precisely at the moment at which the
ellipsoidal point of bifurcation is reached. Tf the volume of light matter is at first

Fig. 3.

greater than this critical volume, matter will be thrown off equatorially before the
ellipsoidal point of bifurcation is reached, the amount ejected being such that the
volume is just reduced to the critical volume when this point is reached. Conversely,
of  course, if the volume of light matter is initially less than this, the point of
bifurcation will be reached before any matter is thrown off equatorially.

A rough estimate shows that the critical volume, when the matter is incompressible,
is about one-third of the volume of the core. For a compressible core for which
y > 22, it is of course less, becoming equal to zero when y = 2'2 (approximately).

This completes our collection of theoretical results. They may now be recapitulated
and discussed with reference to actual astronomical conditions.

Summary and Discussion of Results.

45. Our discussion began with a general survey of the types of configurations
which can be assumed by compressible astronomical masses in rotation. The result
announced in a previous paper® that the incompressible mass provides a good model
from which to study the behaviour of compressible masses has on the whole been fully
confirmed. A mass of incompressible matter, shrinking while rotating, will assume
first the shape of a spheroid, then that of an ellipsoid, afterwards becoming unstable

* ¢Phil. Trans.,” A, vol. 213, p. 457.
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and probably dividing into two detached masses after passing through a series of
pear-shaped configurations. In the present investigation it has been found that,
except for an alternative possibility to be discussed later, a shrinking compressible
mass will experience a very similar sequence of changes. It will pass through
a sequence of figures which from their similarity to the spheroids and ellipsoids of
incompressible masses, may be described as pseudo-spheroids and pseudo-ellipsoids.
The pseudo-spheroids become unstable when a certain degree of flatness is reached
and give place to a series of pseudo-ellipsoids, these in turn become unstable when a
certain degree of elongation is reached and give place to a series of pear-shaped
figures which probably end by fission into detached masses.

46. It may simplify the presentation of the detailed results obtained, if we confine
our attention at first to the innermost strata, this being supposed to mean strata so
near the centre (which is taken as origin) that terms in «, %7 &c., may be neglected
in comparison with terms in a? 4% 2°. It has been found that these strata will be
first truly spheroidal, then truly ellipsoidal, then pear-shaped, each change of figure
corresponding, as in the incompressible mass, to a passage through a point of
bifurcation of the system as a whole. ,

" The problem has been studied in detail for a pressure-density law of the form

p=«p'—cons., . . . . . . . . . . (175)

and special attention has been paid to the exact position of the configuration at which
pseudo-spheroidal configurations give place to pseudo-ellipsoidal ones. This configu-
ration we may refer to as the ellipsoidal point of bifurcation ; its special importance
will appear later. The corresponding configuration for an incompressible mass is the
Maclaurin-Jacobian point of bifurcation ; at this point the semi-axes a,, ¢, and the
angular velocity w, are given by ‘

a, = 1°1972, ¢, = 0°69766, w[27 = 0°18712p,

so that the equation of the boundary is

2 2 2
x+2y+_2_=1
y c

For a compressible mass, the equations of the innermost strata of constant density
at the ellipsoidal point of bifurcation have been found to be

x*+1°

2

[1—0°016307¢—(0°00884+ 001850 (y—2)) ¢—...]

Ay

2 ' —
+Ez—z[l+O'O5634e+(0'01598+0'06565(y—2)) S+, ]=0"L  (176)
0

where p, is the density at the centre, & that at the surface, and e stands for (p,—a)/p,
For the important case of a gaseous mass, ¢ is of course equal to unity.
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Thus at the ellipsoidal point of bifurcation, the innermost strata of equal density
are of flatter shape than those for an incompressible mass, showing that compressibility
tends to postpone instability for the spheroidal mass.

The value of w, the angular velocity at this point of bifurcation has been found to
be given by '

w*[27p, = 0'18712—0°04400¢—(0°01292+ 005495 (y—2)) &—..., . . (177)
or, if we evaluate »* in terms of p, the mean density of the whole mass,
W[2mp = 0'18712+0°06827¢+(0°01602+0°07098 (y—2)) —..., . . (178)

the coefficient of > now being only approximate. We notice that ?/27p is greater
for a compressible mass than for an incompressible mass, so that again compressibility
may be said to postpone the instability of the spheroidal form.*

Equation (176) applies only to the innermost strata for which «*, &c., may be
neglected. The equation of the outer strata, both at the point of bifurcation and
elsewhere, are found to contain terms of degrees four and higher, there being terms of
degrees four and two multiplied by e, terms of degrees six, four and two multiplied
by ¢, and so on. The terms of degrees six and four have been calculated for the
ellipsoidal point of bifurcation and the terms of degree four for the pear-shaped
point of bifurcation.

The presence of these terms destroys the spheroidal or ellipsoidal shape of the
outer strata. In general it is found that the outer strata are more lens-shaped than
the inner strata when these latter are spheroidal, and more spindle-shaped than the
inner strata when these latter are ellipsoidal. The lens-shaped form of the outer
strata may go so far that the outer boundary develops a sharp edge. When this
occurs, centrifugal force is exactly equal to gravity at points on the periphery of the
lens, and any further increase in the rotation of the mass results in matter being
thrown off from round this periphery. Similarly the spindle-shaped figure may
develop sharp ends, in which case matter will be thrown off here also.

47. Consider now a gradually shrinking mass of gas or other compressible matter,
the rotation increasing as the shrinkage proceeds. For a very slow rotation the
strata and the boundary will all be spheroidal. As the rotation increases, the
boundary departs more and more from the spheroidal form, taking a series of forms

* All terms in w?/27p are positive because y — 2 is necessarily positive ; for, as we shall see, if y <2, the
compressibility so far postpones the occurrence of the ellipsoidal point of bifurcation that it does not oceur
at all. Incidentally equation (178) has an important bearing on the origin of the solar system. It shows
that for every mass which has broken up by fission ?/27p must at some time have exceeded the value
0-18712. This provides the keystone, which has so far been wanting, in an argument I have given
elsewhere (* M. N. Royal Ast. Soc.,” 77, p 191) to show that the solar system is very unlikely to have
broken up by rotation alone.
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which we have called pseudo-spheroidal, these being more lens-shaped than true
spheroids. There are two alternatives. It may be that the point of bifurcation will
be reached before a sharp edge forms at the equator of the pseudo-spheroids, and
if this happens the innermost strata will become ellipsoidal, and the outer strata
and the boundary will be pseudo-ellipsoidal ; the mass will proceed towards the pear-
shaped form and ultimate fission. But, instead of this happening, it may be that a
sharp edge will be formed before the point of bifurcation is reached, and the mass
will disintegrate through equatorial loss of matter. It is of the utmost importance
to determine which of these events will happen first for a particular mass.

48. Some information may be obtained from a general survey of the problem.
The spherical solutions for a mass of matter at rest obeying the law p = «p” have
been investigated by Rrrrer, DArRwWIN, EMDEN* and others. Excepting the special
case of y = 2, in which the equation reduces to a linear equation, the solution can be
expressed in finite terms in one case only, namely y = 14. In this case the solution,
first given by SCHUSTER,T is

p=A(+rfa®) . . . . . . . . . (179)

This happens also to give the lowest value of y for which the mass is finite. For
values of vy less than 11, the matter extends to infinity and the total mass is infinite ;
when y = 11, the matter extends to infinity but the total mass is finite; when
vy > 1}, the matter is of finite extent and of finite total mass. As y increases the
variations in density becomes less rapid and finally the value y = o corresponds to
an incompressible mass in which the density is uniform throughout.

Now clearly a mass for which y = 1} will lose matter equatorially with even the
slightest amount of rotation. For all except an infinitesimal fraction of the whole
mass is concentrated in regions near the centre, and the potential near the edge may
accordingly be taken to be M/r. The value of Q is therefore

Q=

=

+30? (2 +9°).

The problem is now seen to be identical with one which has been studied by
Rocur.} There is a critical equipgtential on which double points occur all round the
equator, and this is the equipotential

Q = 3 (Mo).

* R. EMDEN, ‘Gaskugeln’ (Leipzig, 1907), where references to the work of previous investigators
will be found. ‘

1 ¢British Assoc. Report,” 1883, p. 428.

{ “Essai sur la constitution et lorigine du Systéme Solaire,” ¢ Acad. de Montpellier. Section des
Sciences, VIIL, p. 235. A more accessible account is to be found in POINCARE’S ‘Legons sur les
Hypothéses Cosmogoniques,’” 2nd edition, p. 15.


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

204 MR. J. H. JEANS ON THE CONFIGURATIONS

The equatorial radius is M*»~%. By a simple integration the volume of this critical
equipotential is found to be

39w Mo F‘" 4 cos?9—3

Too 0=1 cos® O sin 6 d0 = 327 Mw~?x 0°0225466.
0 _

This volume is of course equal to M/p where p is the mean density, from which

we find \
o275 = 0°360746. . . . . . . . . . (180)

Since p = 0, the critical value of o is also zero, and the innermost strata differ
only imperceptibly from spheres. Thus, when y = 14, equatorial break-up occurs as
soon as the mass is set into rotation at all, and therefore long before there can be
any question of the pseudo-ellipsoidal form being attained.

At the other end of the scale (y = =) comes the incompressible mass, for which
the ellipsoidal form is attained long before there is any question of equatorial
breaking up.

- Thus for some value of v, intermediate between y = 1} and v = o, there must be
a crossing over from equatorial break-up to fission through pseudo-ellipsoidal and
pear-shaped figures. For a mass for which y has this critical value, the point of
bifurcation is reached and the pseudo-ellipsoidal form assumed at the very instant at
which equatorial break-up is about to begin.

49. A comparison with the corresponding two-dimensional problem is of interest
at this stage. Here again a solution in finite terms is only possible for one value of
v other than y = 2, and here again this value happens to be that one for which the
total mass is first finite, while the matter extends to infinity. The value in question

is y = 1 and the solution is
p=A+a®)? . . . . . . . . . (181)

which may be compared with the three-dimensional solution (179). Again it is clear
that, somewhere between y = 1 and y = o, there must be a critical value of y at
which a transition occurs from equatorial break-up to fission into two detached
masses. The two-dimensional problem can, however, be fully solved, and the
critical value is found to be y = 2 exactly.®

Seeing that the two problems run fairly close together in all their essential
features, we might suspect that the ecritical value in the three-dimensional problem
would not be very far from 2. An alternative guess might be y = 2%, this corresponding
more closely to the two-dimensional value y = 2, since y = 1} in the three-dimensional
problem has been found to correspond to 4 = 1 in the two-dimensional problem.

50. In the present paper the critical value of y has been shown to be determined
in the three-dimensional problem by the equation .

1+e[(y—2)—10509] +&[§ (y—2)*—0'4068 (y—2) —0°0510] +... = 0, . (182)
¥ ¢Phil. Trans.,” A, vol. 213, p. 471.
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in which ¢ must of course be put equal to unity for a gas in which ¢ = 0 at the
boundary. The series on the right is probably rapidly convergent, but sufficient
terms have not been calculated for the value of vy to be determined with accuracy.
Neglecting all terms beyond those written down, the root of equation (182), when
e =1, 1s found to be y = 21521, but the remaining terms appear likely to increase
this value somewhat, and we may perhaps take y = 2'2 as an approximate value.’
This, we may notice, is just half-way between the two guess-values considered in § 50.

When the density at the boundary is not zero, the critical value of y is less than
this; for instance, a critical value y = 1 corresponds to a value of ¢ equal to about
three-quarters.

An approximately accurate drawing of the critical figure, when ¢ = 1, is shown in
fig. 4, the inner curves being strata of constant density.

51. We have considered the effect of heterogeneity in the structure of the matter,
and have found that a sinking of the heavier elements to the centre of the mass will
result in an increase in the critical value of 4. There is no limit to the amount of

Fig, 4.

increase that can be produced in this way, although naturally the amount of increase
depends on the extent to which the light and heavy elements are separated and on
the ratio of their amounts. As an illustration, we considered the extreme case of a
core of heavy incompressible material which we called iron, surrounded by an
atmosphere of much lighter material which we called hydrogen, the two elements
being supposed to be completely separated. If the volume of hydrogen was initially
greater than about one-third of that of iron, the composite mass set into rotation will
first disintegrate through equatorial loss of matter.

A drawing of the critical figure has already been shown on fig. 3 (p. 200); this
may be compared with fig. 4.

52. There is, however, a very essential difference between the failure of a uniform
mass to attain the ellipsoidal form and the corresponding failure of a heterogeneous
mass. Briefly speaking the former is permanent, while the latter is transitory.

Consider for simplicity a mass of perfectly uniform gas—say helium for which
y = 13—set into rotation and continually shrinking by cooling. The value of 5 is

VOL. CCXVIIL.—A. ‘ 2 E
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certainly below the critical value (about 2°2), so that as the rotation increases matter
will be thrown off from the equator before the ellipsoidal shape can be reached. No
matter how much material is ejected in this way, the central mass remains a mass of
helium with y = 1%, and so can never attain the ellipsoidal form. The mass will
disintegrate completely by loss of matter from its equator, and there can be no fission
into separate masses—unless, of course, the helium ultimately so changes its character
that the average value of y becomes greater than about 22.

~ Contrast this with the behaviour of the mass of iron and hydrogen already
considered. The mass will lose matter by equatorial ejection, but the matter lost
will consist entirely of hydrogen, and so this process will continually diminish the
ratio of hydrogen to iron, and as the process continues the mass will continually
approximate to a mass of incompressible iron. As soon as the ratio of hydrogen to
iron is reduced to about one-third, the pseudo-spheroidal form becomes unstable, and
the mass will assume a pseudo-ellipsoidal form.

53. We are now in a position to follow the changes in a mass of gas whose rotation
continually increases through shrinkage. At first we may assume the gas to obey
the ideal laws, so that y will be less than 1%, and, as the rotation increases, a stage
will be reached at which matter is ejected from the equator. Some of this matter
will perhaps fall back on to the rotating mass, but some must also pass to infinity,
this latter representing a real loss of mass and of angular momentum to the rotating
body. The loss must be at such a rate that the figure of the rotating body always
remains a pseudo-spheroid with a sharp edge, and the velocity of rotation remains
always exactly equal to the critical velocity corresponding to this critical figure.

When v is equal to 1, the critical angular velocity is given by equation (180), so
that o = 086 x 27p. For the greatest value of y for which the pseudo-spheroidal
figure is possible (about y = 2'2), the value of the critical angular velocity is given
by equation (178), and this seems to be converging to a value not far from
o = 086 x27p. We may perhaps conjecture that for all masses of gas which are
throwing off matter equatorially the value of  is nearly equal to 0'86 x 27p.

As the mass shrinks p becomes greater, so that rotation becomes more and more
rapid. A stage is reached in time in which the ideal gas laws no longer hold, owing
to the distance apart of the molecules having become comparable with their diameters.
The value of y now increases beyond its value for an ideal gas, and values of
greater than 1§ become possible. When a value of y is reached which is about
equal to 2'2 if the mass of gas is perfectly mixed, but may be greater if the mixing is
imperfect, the pseudo-spheroidal form becomes unstable, the mass assumes the pseudo-
ellipsoidal form and the process probably ends by fission into two detached masses.

. 54. The value y = 2'21 has been found by Kocsa for air at a pressure of 100 atmo-
spheres and a temperature of —79°8 C., the corresponding density being 0°23.
Partly from this observational material, and partly from general theoretical
principles, we may anticipate that the value y = 2°2 will be attained at a density
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of about one-quarter of that of the substance in its solid state, and for the permanent
gases this may be taken to be about a quarter of the density of water.

Thus a mass of gas will lose matter equatorially until it has shrunk to a density
of about a quarter of that of water, after which it will elongate and divide up.
Assuming the relation o’ = 086 x 275, the mean density g and the period of rotation
in days (P), will be connected, so long as the mass is losing matter equatorially, by
the relation

p=0035+P2
the density p = 4 corresponding to a period of about 9 hours and p = % to a period
of 64 hours. When this stage is reached the process of elongation followed by
fission begins. Assuming that when fission is complete we have two stars of
approximately equal mass and mean densities p = % revolving round one another
almost in contact, the period of this system would be about a day.

55. The critical density which we have conjectured to be about one quarter is
perhaps not far from that of the average B-type star.® Thus, subject to the
assumptions on which we have been working, fission ought to begin at about B-type.
This is in very close agreement with the results obtained by CAMPBELL in his
“Second Catalogue of Spectroscopic Binary Stars.”f

Tt is not, however, in agreement with the results obtained by SHAPLEY] in his
“‘S’oudy of the Orbits of Eeclipsing Binaries.” Adopting RUSSELL’S view of stellar
evolution, our result would show that giant stars (except, possibly, of A-type)
should be pseudo-spheroids; only B and dwarf stars could form binaries. SHAPLEY
discusses 93 systems; 88.are of B or dwarf type, but only 21 have densities greater
than 0316, and only 57 have densities greater than 0'1. For one star, W Crucis,
of which the orbit has been determined by Russeri,§ the density of the brighter
component appears to be of the order of 0°000002. We are led to inquire under
what physical conditions, different from those we have assumed, it can be possible
for fission to occur while the density is still far below the value to which our

analysis has led.
56. Consider the simplest problem of a spherical mass at rest, the equations of

@E av 4.‘7TGB f Prg d/f',
0

or P or r?

equilibrium being

where G is the gravitation constant. If p, is the pressure at the centre and R the
radius, we obtain, on integrating from the boundary to the centre,

Py = 4=G r £ rpfz dr dr.

% RUSSELL estimates the density of a giant A-type star at 0'1 (‘ Nature,’ 113, p. 282)
t *Lick Observatory Bulletin,” 1910.
i ¢Princeton Observatory Contributions, No. 3’ (1915).
§ ¢ Astrophysical Journal,’ 36, p. 146.
2 E2
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If for any reason the ratio of increase of pressure to density is about that
corresponding to the critical value y = 22, the variation of density, except near the
surface, will not be very great. An approximation which will be accurate as regards
order of magnitude at least will be

R
0

po = 47Gp? j 7% fw dr dr = ?g GFR?,
0

or, since 47pR® = M (the mass of the body),

/4 \}
p0=%GQ%r>M§p*=5x10‘8M%ﬁ*.. oo ... (183)
Assuming the gas law
p=%TpB, A G 1-7!

where R is the gas constant, and B a multiplying factor introduced by deviations
from BovLe's law, we find for the temperature at the centre

T, = 2 Po_ 551022 Mz (s
0 RB o 5)( 0 RB P (P/Po),
in which p/p, may, in the case of equilibrium with y equal to about 2'2, be put equal
to about 06, giving
T, = 8 x 10—8R”lBM%p%.. Y ¢ -1
The energy of radiation at the centre is ¢T,* per unit volume, where o is STEFAN’S
constant of which KUurLBAUM'S value is 7°06 x 10-%, and the pressure of radiation,
being one-third of this, is $6T,* in all directions.
Denote the pressure of radiation by py and the gas pressure by pg.  If p,, the pressure
at the centre may be regarded as arising mainly from gas pressure, we have

1 4 4
ﬁizﬂ—o=4x10-3s<—”l>Mﬂ : 186
pe B &p)"> (166)
which is independent of p.
For a gas of molecular or atomic weight 32 the value of m/R is about 4 x 107,
while the value of B will not differ greatly from unity until very high densities are
reached. Thus equation (186) becomes approximately

R N Y R ¢ 1:/0
Da

It will only be when this ratio is small that the radiation pressure will be negligible
in comparison with gas pressure at the centre of the star, and this fixes a limit to M
of the order of 10%, independently of the density of the star.
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Most stars whose mass is known* have a mass comparable with that of our sun
(M = 2x10%), and for these the ratio (187) is far from negligible. Thus it appears
that for stars of mass comparable with our sun, and of molecular or atomic weight
about 82, the pressure of radiation will not be negligible in comparison with gas
pressure ;T the equations of equilibrium must be replaced by

o ov
ar (pa+3oT) = Py

and our calculation fails from equation (184) onwards.
57. If we had taken a molecular weight 2, instead of 82, the value of p/ps would
have been reduced by a factor (16)~*, and we should have had approximately

Pr — y0-tsM,
Pa

a ratio which may be considered small when M is of the order of 10%. Now whether we
consider that radiation pressure is comparable with gas pressure or not, the tempera-
ture at the centre of stars such as we have considered is of the order of 107 degrees
Centigrade, and at such temperatures it seems probable that matter would to a large
extent be broken up into its constituent electrons and nuclei. For purposes of
calculation of gas pressure each electron behaves like the molecule of a gas, and the
effect of electronic disintegration is to reduce the effective molecular weight. It is
readily seen that when electronic disintegration is complete, a limiting effective
molecular weight of 2 is reached for all substances except hydrogen.}

Further, radiation pressure when it is appreciable may be treated as arising from
molecules of molecular weight zero, and so the effective molecular weight may be
still further decreased.

* The stars whose masses are known are bright binaries—binaries because there is no means of determining
mass except by the mutual action of two bodies on one another, and bright because the fainter binaries
escape observation. The conclusion of this paper is that bright binaries are binaries of large mass, the mass
being of order of magnitude greater than 10% gm. This is borne out by the observed masses of those binaries
which are bright enough to have attracted attention, but there is nothing to show that there are not a
great number of less bright binaries of smaller mass. It rather appears as if the few well-determined
masses of binaries are not likely to give a good sample of the masses of all stars. It is perhaps
significant that RUSSELL’S well-known diagram of absolute magnitudes (‘ Nature,” vol. 113, p. 252) shows
a range of something like five magnitudes (ratio 100 to 1) for dwarf stars of similar spectral type,
suggesting a range of masses enormously greater than that calculated from observations on binary stars.

t This agrees with the result stated by EppineToN (¢ M.N., Royal Ast. Soc.,” vol. 77, p. 16), but as the
question is of some importance for our present investigation, I have thought it worth giving a separate
discussion freed from the special assumptions of EDDINGTON’S paper. EDDINGTON’S statement that
radiation pressure is practically negligible for dwarf stars does not appear to be altogether confirmed by
my equation (187).

1 Cf. EppiNaToN, ¢ M.N., Royal Ast. Soc.,” vol. 77, p. 596.
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Thus the effective molecular weight, regarded as being determined by equation
(184), may fall to very small values as we pass to the interior of a star. In §43 we
considered the tendency for greater molecular weights to occur in the interior of the
star, and found that it would delay the stage at which the pseudo-spheroidal form
would become unstable. It now appears that, in order to represent actual conditions,
we should have examined the reverse tendency. Effectively lighter molecular
weights may be expected to occur in the interior of a star, and this will cause the
process of fission to begin at lower densities. In a general way we may expect that
stars of greatest mass will begin the processes of fission in the earliest stages of their
careers. 1If so, such a star as W Crucis, assuming that its two components have
been formed out of the fission of a single body, must be a star of very great mass
indeed.

58. To sum up, we have found that a star of small mass (say t5th that of our sun),
in which there is no great amount of atomic disintegration, and in which pressure of
radiation does not play a prominent part dynamically, will not begin to break up into
a binary star until it reaches a density of from one-quarter to one-half that of water.
In more massive stars there will be considerable atomic disintegration, and pressure
of radiation will be dynamically important. Such stars will break up at lower
densities than smaller stars. "
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